Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T16:59:49.911Z Has data issue: false hasContentIssue false

Assessment of the morphometry of saccular otoliths as a tool to identify triplefin species (Tripterygiidae)

Published online by Cambridge University Press:  20 July 2015

Esteban Avigliano*
Affiliation:
Instituto de Investigaciones en Producción Animal (INPA-CONICET-UBA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina
Laith A. Jawad
Affiliation:
Flat Bush, Manukau, Auckland, New Zealand
Alejandra V. Volpedo
Affiliation:
Instituto de Investigaciones en Producción Animal (INPA-CONICET-UBA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina
*
Correspondence should be addressed to:E. Avigliano, Instituto de Investigaciones en Producción Animal (INPA-CONICET-UBA), Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280 (C1427CWO), Buenos Aires, Argentina email: [email protected]

Abstract

In the present work we describe nine saccular otolith morphometric indices (circularity, rectangularity, aspect ratio, percentage of the otolith surface occupied by the sulcus, percentage of the sulcus length occupied by the cauda length and ostium length, otolith length relative to the length of the fish, rostrum aspect ratio and percentage of the rostrum length occupied by the otolith length) of 41 species of the Tripterygiidae family collected mainly from New Zealand, Australia, Chile, South Africa, Mediterranean Sea and North America. The principal component of analysis showed that the indices that best explain the variability between species were related to sulcus and rostrum morphometry. According to cluster analysis, otolith morphometry could reflect the diversity of microenvironments for some genera such as Notoclinops and Forsterygion, while this does not happen to genera like Enneapterygius and Ruanoho. The discriminant analysis showed that the species Helcogrammoides cunninghami, Karalepis stewarti, Lepidoblennius haplodactylus, Notoclinus compressus, Ucla xenogrammus can be discriminated by using the morphometric indices. Two new indices related to the sulcus that were of great value for the discrimination of these species are described for the first time. This information will be a useful tool for palaeontological, taxonomic and trophic ecology studies.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, G.R. and Robertson, D.R. (1994) Fishes of the tropical eastern Pacific. Honolulu, HI: University of Hawaii Press.Google Scholar
Annabi, A., Said, K. and Reichenbacher, B. (2013) Inter-population differences in otolith morphology are genetically encoded in Aphanius fasciatus (Cyprinodontiformes, killifishes). Scientia Marina 77, 269279.Google Scholar
Avigliano, E., Comte, G., Rosso, J.J., Mabragaña, E., Della Rosa, P., Sanchez, S., Volpedo, A.V., del Rosso, F. and Schenone, S. (2015a) Identification of fish stocks of river crocker (Plagioscion ternetzi) in Paraná and Paraguay rivers by otolith morphometry. Latin American Journal of Aquatic Research, in press.Google Scholar
Avigliano, E., Martinez, C.F.R. and Volpedo, A.V. (2014) Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater–estuarine environment. Fisheries Research 149, 5560.Google Scholar
Avigliano, E., Tombari, A. and Volpedo, A.V. (2012) Los otolitos reflejan el estrés ambiental. Biología Acuática 27, 915.Google Scholar
Avigliano, E., Velasco, G. and Volpedo, A.V. (2015b) Use of lapillus otolith microchemistry as an indicator of the habitat of Genidens barbus from different estuarine environments in the southwestern Atlantic Ocean. Environmental Biology of Fishes 98, 16231632. doi: 0.1007/s10641–015-0387-3.CrossRefGoogle Scholar
Avigliano, E., Villatarco, P. and Volpedo, A.V. (2015c) Otolith Sr:Ca ratio and morphometry as indicators of habitat of a euryhaline species: the case of silverside Odontesthes bonariensis . Ciencia Marina, in press.Google Scholar
Backhaus, K., Erichson, B., Plinke, W. and Weiber, R. (2006) Multivariate analysemethoden. Berlin: Springer.Google Scholar
Baker, J.L. (2009) Tripterygiidae. Bony and cartilaginous fishes. In Baker, J.L. (ed) Marine species of conservation concern in South Australia. Volume 1. Adelaide: Reef Watch. Electronic book.Google Scholar
Berger, A. and Mayr, M. (1992) Ecological studies on two intertidal New Zealand fishes, Acanthoclinus fuscus and Forsterygion nigripenne robustum. New Zealand Journal of Marine and Freshwater Research 26, 359370.Google Scholar
Burke, N., Brophy, D. and King, P.A. (2008) Otolith shape analysis: its application for discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. ICES Journal of Marine Science 65, 16701675.CrossRefGoogle Scholar
Callicó Fortunato, R., Benedito Durà, V. and Volpedo, A. (2014) The morphology of saccular otoliths as a tool to identify different mugilid species from the Northeastern Atlantic and Mediterranean Sea. Estuarine, Coastal and Shelf Science 146, 95101.CrossRefGoogle Scholar
Campana, S.E. and Casselman, J.M. (1993) Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences 50, 10621083.Google Scholar
Campana, S.E., Chouinard, G.A., Hanson, J.M., Frechet, A. and Brattey, J. (2000) Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research 46, 343357.Google Scholar
Campana, S.E., Thorrold, S.R., Jones, C.M., Gunther, D., Tubrett, M., Longerich, H., Jackson, S., Halden, N.M., Kalish, J.M., Piccoli, P., de Pontual, H., Troadec, H., Panfili, J., Secor, D.H., Severin, K.P., Sie, S.H., Thresher, R., Teesdale, W.J. and Campbell, J.L. (1997) Comparison of accuracy, precision and sensitivity in elemental assays of fish otoliths using the electron microprobe, proton-induced X-ray emission, and laser ablation inductively coupled plasma mass spectrometry. Canadian Journal of Fisheries and Aquatic Sciences 54, 20682079.Google Scholar
Cañás, L., Stransky, C., Schlickeisen, J., Sampedro, M.P. and Fariña, A.C. (2012) Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic. ICES Journal of Marine Science 69, 250256. doi: 10.1093/icesjms/fss006.CrossRefGoogle Scholar
Cancino, C., Farías, K., Lampas, S., González, B. and Cuevas, V. (2010) Descripción de los complejos estructurales óseos en Helcogrammoides chilensis (Blennioidei: Tripterygiidae) de la zona central de Chile. Revista de Biología Marina y Oceanografía 45, 671682.Google Scholar
Carreras-Carbonell, J., Pascual, M. and Macpherson, E. (2007) A review of the Tripterygion tripteronotus (Risso, 1810) complex, with a description of a new species from the Mediterranean Sea (Teleostei: Tripterygiidae). Scientia Marina 71, 7586.Google Scholar
Chaine, J. (1956) Recherches sur le otoliths des poisons. Etude descriptive et comparative de la sagitta des téléostéens. Bulletin du Centre d’ études et de recherches scientifiques 1, 159275.Google Scholar
Curcio, N., Tombari, A. and Capitanio, F. (2014) Otolith morphology and feeding ecology of an Antarctic nototheniid, Lepidonotothen larseni . Antarctic Science 26, 124132.Google Scholar
Eschmeyer, W.N. and Fong, J.D. (2014) Catalogue of the genera of recent fishes. San Francisco, CA: California Academy of Science.Google Scholar
Feary, D. and Clements, K.D. (2006) Habitat use by triplefin species (Tripterygiidae) on rocky reefs in New Zealand. Journal of Fish Biology 69, 10311046.Google Scholar
Fricke, R. (1994) Tripterygiid fishes of Australia, New Zealand and the southwest Pacific Ocean (Teleostei). Theses Zoologicae 24, 1585.Google Scholar
Fricke, R. (1997) Tripterygiid fishes of the western and central Pacific, with descriptions of 15 new species, including an annotated checklist of world Tripterygiidae (Teleostei). Theses Zoology 29, 1607.Google Scholar
Fricke, R. (2002) Tripterygiid fishes of New Caledonia, with zoogeographical remarks. Environmental Biology of Fishes 65, 175198.Google Scholar
Gauldie, R.W. (1988) Function, form and time-keeping properties of fish otoliths. Comparative Biochemistry and Physiology 91, 395402.CrossRefGoogle Scholar
Gierl, C., Reichenbacher, B., Gaudant, J., Erpenbeck, D. and Pharisat, A. (2013) An extraordinary gobioid fish fossil from southern France. PLoS ONE 8, e64117.CrossRefGoogle ScholarPubMed
Gon, O. (1990) Synaphobranchidae. In Gon, O. and Heemstra, P.C. (eds) Fishes of the Southern Ocean. Grahamstown: JLB Smith Institute of Ichthyology, pp. 102104.CrossRefGoogle Scholar
Holleman, W. (1986) Tripterygiidae. In Smith, M.M. and Heemstra, P.C. (eds) Smiths’ sea fishes. Berlin: Springer-Verlag, pp. 755758.Google Scholar
Hubert, M., Rousseeuw, P. and Verdonck, T. (2009) Robust PCA for skewed data and its outlier map. Computational Statistics and Data Analysis 53, 22642274.Google Scholar
Jaramilo, A.M., Tombaris, A.D., Dura, V.B., Rodrigo, M.E. and Volpedo, A.V. (2014) Otolith eco-morphological patterns of benthic fishes from the coast of Valencia (Spain). Thalassas 30, 5766.Google Scholar
Jawad, L.A. (2007) Comparative morphology of the otolith of the triplefins (family: Tripterygiidae). Journal of Natural History 41, 901924.Google Scholar
Kerr, L.A. and Campana, S.E. (2014) Chemical composition of fish hard parts as a natural marker of fish stocks. In Cadrin, S.X., Kerr, L.A. and Mariani, S. (eds) Stock identification methods: applications in fishery science, 2nd edn. San Diego, CA: Academic Press, pp. 205234. https://www.researchgate.net/profile/Steven_Campana/publication/268388356_Chemical_Composition_of_Fish_Hard_Parts_as_a_Natural_Marker_of_Fish_Stocks_Assumption/links/546a1b2b0cf2397f783011c0.pdf Google Scholar
Kuiter, R.H. (1993) Coastal fishes of south-eastern Australia. Honolulu, HI: University of Hawaii Press.Google Scholar
Lombarte, A. (1992) Changes in otolith area: sensory area ratio with body size and depth. Environmental Biology of Fishes 33, 405410.Google Scholar
Lombarte, A., Olaso, I. and Bozzano, A. (2003) Ecomorphological trends in Artedidraconidae (Pisces: Perciformes: Notothenioidei) of the Weddell Sea. Antarctic Science 15, 11218.Google Scholar
Lombarte, A., Palmer, M., Matallanas, J., Gómez-Zurita, J. and Morales-Nin, B. (2010) Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental Biology of Fishes 89, 607618.Google Scholar
Longmore, C., Fogarty, K., Neat, F., Brophy, D., Trueman, C., Milton, A. and Mariani, S. (2010) A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris . Environmental Biology of Fishes 89, 591605.Google Scholar
Longnecker, K. and Langston, R. (2005) Life history of the Hawaiian blackhead triplefin, Enneapterygius atriceps (Blennioidei, Tripterygiidae). Environmental Biology of Fishes 73, 243251.Google Scholar
Nelson, K.E., Hutchinson, E.S., Li, G., Sly, F.L. and Hedgecock, D. (1994) Variation in life history and morphology in northern anchovies (Engraulis mordax). Cooperative Oceanic Fisheries Investigations 35, 108120.Google Scholar
Nolf, D. (1985) Otolith piscium. In Schultze, H.P. (ed.) Handbook of paleoichthyology, Volume 10. Sttutgart: Gustav Fisher Verlag, pp. 1145.Google Scholar
Olejnik, S.F. and Algina, J. (1984) Parametric ANCOVA and the rank transform ANCOVA when the data are conditionally nonnormal and heteroscedastic. Journal of Educational and Behavioral Statistics 9, 129149.Google Scholar
Parisi-Baradad, V., Lombarte, A., García-Ladona, E., Cabestany, J., Piera, J. and Chic, O. (2005) Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Marine and Freshwater Research 56, 795804.Google Scholar
Platt, C. and Popper, A.N. (1981) Fine structure and function of the ear. In Tavolga, W.N., Popper, A.N. and Fay, R.R. (eds) Hearing and sound communication in fishes. New York, NY: Springer-Verlag, pp. 338.Google Scholar
Popper, A.N., Rogers, P.H., Saidel, W.M. and Sox, M. (1988) Role of the fish ear in sound producing. In Aterma, J., Fay, R.R., Popper, A.N. and Tavolga, W.N. (eds) Sensory biology of aquatic animals. New York, NY: Springer, pp. 687710.Google Scholar
Popper, A.N. and Zhongmin, L. (2000) Structure–function relationship in fish otolith organs. Fisheries Research 46, 1525.Google Scholar
Randall, J.E. (1995) A review of the triplefin fishes (Perciformes: Blennioidei: Tripterygiidae) of Oman, with descriptions of two new species of Enneapterygius . Revue Française d'Aquariologie 22, 2734.Google Scholar
Randall, J.E., Allen, G.R. and Steene, R.C. (1990) Fishes of the Great Barrier Reef and coral sea. Honolulu, HI: University of Hawaii Press.Google Scholar
Reichenbacher, B., Kamrani, E., Esmaeili, H.R. and Teimori, A. (2009) The endangered cyprinodont Aphanius ginaonis (Holly, 1929) from southern Iran is a valid species: evidence from otolith morphology. Environmental Biology of Fishes 86, 507521.Google Scholar
Reichenbacher, B. and Reichard, M. (2014) Otoliths of five extant species of the annual killifish Nothobranchius from the East African savannah. PLoS ONE 9, e112459. doi: 10.1371/journal.pone.0112459.Google Scholar
Reichenbacher, B., Sienknecht, U., Küchenhoff, H. and Fenske, N. (2007) Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, Prolebias). Journal of Morphology 268, 898915.Google Scholar
Schulz-Mirbach, T. and Reichenbacher, B. (2006) Reconstruction of Oligocene and Neogene freshwater fish faunas – an actualistic study on cyprinform otoliths. Acta Palaeontologica Polonica 51, 283304.Google Scholar
Schwarzhans, W. (1980) Fish otoliths from the New Zealand Tertiary. Reports of the New Zealand Geological Survey 113, 132154.Google Scholar
Schwarzhans, W. and Grenfell, H.R. (2002) The fish otolith faunas of early Nukumaruan sites at Hawke's Bay and Waipukurau. Proceedings of the Taupaki Malacological Society 3, 123.Google Scholar
Smale, M.J., Watsony, G. and Hecht, T. (1995) Otolith atlas of Southern African marine fishes, monograph 1. Grahamstown: J.L.B. Smith Institute of Ichthyological Research.Google Scholar
Teimori, A., Jawad, L.A.J., Al-Kkarusi, L.H., Al-Mamry, J.N. and Reichenbacher, B. (2012a) Late Pleistocene to Holocene diversification and zoogeography of the Arabian killifish Aphanius dispar inferred from otolith morphology. Scientia Marina 76, 637645.Google Scholar
Teimori, A., Schulz-Mirbach, T., Esmaeili, H.R. and Reichenbacher, B. (2012b) Geographical differentiation of Aphanius dispar (Teleostei: Cyprinodontidae) from Southern Iran. Journal of Zoological Systematics and Evolutionary Research 50, 289304.Google Scholar
Tuset, V.M., Azzurro, E. and Lombarte, A. (2011) Identification of Lessepsian fish species using the sagittal otolith. Scientia Marina 76, 289299.CrossRefGoogle Scholar
Tuset, V.M., Lombarte, A. and Assis, C.A. (2008) Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina 72, 7198.Google Scholar
Tuset, V.M., Parisi Baradad, V. and Lombarte, A. (2013) Application of otolith mass and shape for discriminating scabbardfishes Aphanopus spp. in the north-eastern Atlantic Ocean. Journal of Fish Biology 82, 17461752.Google Scholar
Vignon, M. and Morat, F. (2010) Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Marine Ecology Progress Series 411, 231241.Google Scholar
Volpedo, A.V. and Echeverría, D.D. (2003) Ecomorphological patterns of the sagitta in fish associated with bottom marine shelf in the Mar Argentino. Fisheries Research 60, 551560.Google Scholar
Volpedo, A.V. and Fuchs, D.V. (2010) Ecomorphological patterns of the lapilli of Paranoplatense Siluriforms (South America). Fisheries Research 102 160165.Google Scholar
Wellenreuther, M., Barrett, P.T. and Clements, K.D. (2007) Ecological diversification in habitat use by subtidal triplefin fishes (Tripterygiidae). Marine Ecology Progress Series 330, 235246.Google Scholar
Wellenreuther, M., Brock, M., Montgomery, J. and Clements, K.D. (2010) Comparative morphology of the mechanosensory lateral line system in a clade of New Zealand triplefin fishes. Brain, Behavior and Evolution 75, 292308.Google Scholar
Wirtz, P. (1976) The otoliths of the Mediterranean Tripterygion . Vie et Milieu 26, 293298.Google Scholar
Zhuang, L., Ye, Z. and Zhang, C. (2014) Application of otolith shape analysis to species separation in Sebastes spp. from the Bohai Sea and the Yellow Sea, northwest Pacific. Environmental Biology of Fishes 98, 547558. doi: 10.1007/s10641-014-0286-z.Google Scholar