Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T00:49:39.210Z Has data issue: false hasContentIssue false

Coupling of Environmental and Endogenous Factors in the Control of Rhythmic Behaviour in Decapod Crustaceans

Published online by Cambridge University Press:  11 May 2009

Hugo Aréchiga
Affiliation:
División de Estudios de Posgrado e Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, México
Leonardo Rodríguez-Sosa
Affiliation:
División de Estudios de Posgrado e Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, México

Extract

Behavioural patterns of crustaceans are known to vary within the 24 hour cycle and in relation to environmental signals. Light and chemical stimuli induce specific behavioural responses. Retinal and extra-retinal photoreceptors use different motor responses to illumination selectively. Light responsiveness is modulated at various levels, from the light admittance to the retina, up to the integration in higher order interneurones and motorneurones. An endogenous circadian rhythmicity contributes to the various elements of the system.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aréchiga, H., 1994. Circadian rhythmicity. Current Opinion in Neurobiology, 3, 100110.Google Scholar
Aréchiga, H. & Atkinson, R.J.A., 1975. The eye and some effects of light on the locomotor activity in Nephrops norvegicus. Marine Biology, 32, 6376.CrossRefGoogle Scholar
Aréchiga, H., Bañuelos, E., Frixione, E., Picones, A. & Rodríguez-Sosa, L., 1990. Modulation of crayfish retinal sensitivity by 5-hydroxytryptamine. Journal of Experimental Biology, 150, 123143.CrossRefGoogle ScholarPubMed
Aréchiga, H., Cortés, J.L., García, U. & Rodríguez-Sosa, L., 1985a. Neuroendocrine correlates of circadian rhythmicity in crustaceans. American Zoologist, 25, 265274.CrossRefGoogle Scholar
Aréchiga, H., Fernández-Quiróz, F., Fernández, De Miguel F. & Rodríguez-Sosa, L., 1993. The circadian system of crustaceans. Chronobiology International, 10, 119.CrossRefGoogle ScholarPubMed
Aréchiga, H., Fuentes, B. & Barrera, B., 1973. Circadian rhythm of responsiveness in the visual system of the crayfish. In Neurobiology of invertebrates (ed. J., Salanki), pp. 403—421. Budapest: Hungarian Academy of Sciences.Google Scholar
Aréchiga, H., García, U. & Rodríguez-Sosa, L., 1985b. Neurosecretory role of crustacean eyestalk in the control of neuronal activity. In Model neural networks and behavior (ed. A.I., Selverston), pp. 361379. New York: Plenum Press.CrossRefGoogle Scholar
Aréchiga, H. & Huberman, A., 1980. Hormonal control of circadian rhythmicity in crustaceans. In Frontiers in hormone research, vol. 6 (ed. H., Aréchiga and C., Valverde), pp. 1634. Basel: Karger.Google Scholar
Aréchiga, H., Huberman, A. & Martínez-Palomo, A., 1977. Release of a neurodepressing hormone from the crustacean sinus gland. Brain Research, 128, 93108.CrossRefGoogle ScholarPubMed
Aréchiga, H., Huberman, A. & Naylor, E., 1974. Hormonal modulation of circadian neural activity in the crab Carcinus maenas (L). Proceedings of the Royal Society of London B, 187, 299313.Google Scholar
Aréchiga, H. & Naylor, E., 1976. Endogenous factors in the control of rhythmicity in decapod crustaceans. In Biological rhythms in the marine environment (ed. P.J., De Coursey), pp. 116. Columbia: University of South Carolina Press.Google Scholar
Ayers, J.L. & Davis, W.J., 1977. Neuronal control of locomotion in the lobster Homarus americanus. I. Motor programs for forward and backward walking. Journal of Comparative Physiology, 115, 127.CrossRefGoogle Scholar
Bamber, S.D. & Naylor, E., 1996. Chemical communication and behavioural interaction between sexually mature male and female shore crabs (Carcinus maenas). Journal of the Marine Biological Association of the United Kingdom, 76, 691700.CrossRefGoogle Scholar
Barrera-Mera, B., 1976. Effect of cerebroid ganglion lesions on ERG circadian rhythm of the crayfish. Physiology and Behavior, 17, 5964.CrossRefGoogle ScholarPubMed
Barrera-Mera, B., 1978. Neural coupling between left and right electroretinographic circadian oscillations in the crayfish P. bouvieri. Comparative Biochemistry and Physiology, 61A, 427432.CrossRefGoogle Scholar
Barthe, J.Y., Bevengut, M. & Clarac, F., 1993. In vitro, proctolin and serotonin induced modulations of the abdominal motor system activities in crayfish. Brain Research, 623, 101109.CrossRefGoogle ScholarPubMed
Beall, S.P., Langley, D.J. & Edwards, D.H., 1990. Inhibition of escape tailflip in crayfish during backward walking and the defence posture. Journal of Experimental Biology, 152, 577582.CrossRefGoogle ScholarPubMed
Bevengut, M., Libersat, F. & Clarac F., 1986. Dual locomotor activity selectively controlled by force- and contact sensitive mechanoreceptors. Neuroscience Letters, 66, 323327.CrossRefGoogle ScholarPubMed
Chrachri, A. & Clarac, F., 1990. Fictive locomotion in the fourth thoracic ganglion of the crayfish, Procambarus clarkii. Journal of Neuroscience, 10, 707719.CrossRefGoogle ScholarPubMed
De Coursey, P.J., 1983. Biological timing. In Biology of Crustacea (ed. E., Bliss), vol. 7, Behaviour and ecology (ed. J., Vernberg and W.B., Vernberg), pp. 107162. New York: Academic Press.Google Scholar
Edwards, D.H., 1984. Crayfish extraretinal photoreception. I. Behavioural and motoneuronal responses to abdominal illumination. Journal of Experimental Biology, 109, 291306.CrossRefGoogle ScholarPubMed
Edwards, D.H., 1991. Mutual inhibition among neural command systems as a possible mechanism for behavioral choice in crayfish. Journal of Nenroscience, 11, 12101223.Google ScholarPubMed
El Manira, A., Rossi-Durand, C. & Clarac, F., 1991. Serotonin and proctolin modulate the response of a stretch receptor in crayfish. Brain Research, 541, 157162.CrossRefGoogle ScholarPubMed
Fernández, de Miguel F. & Aréchiga, H., 1992. Sensory inputs mediating two opposite behavioural responses to light in the crayfish Procambams clarkii. Journal of Experimental Biology, 164, 153169.CrossRefGoogle Scholar
Fernández, de Miguel F. & Aréchiga, H., 1993. Neuronal substrate of light-induced attraction and withdrawal in crayfish: a case of behavioral selection. In Neuroscience: from neural networks to artificial intelligence (ed. P., Rudomin et al.), pp. 209230. New York: Springer-Verlag.Google Scholar
Fernández, de MiguelF. & Aréchiga, H., 1994. Circadian locomotor activity and its entrainment by food in the crayfish Procambams clarkii. Journal of Experimental Biology, 190, 921.Google Scholar
Fernlund, P., 1976. Structure of a light-adapting hormone from the shrimp Pandalus borealis. Biochemistry et Biophysica Acta, 439, 1725.Google ScholarPubMed
Fernlund, P. & Josefsson, L., 1972. Crustacean color-change hormone; amino acid sequence and chemical synthesis. Science, New York, 177, 173175.CrossRefGoogle ScholarPubMed
Frixione, E., Aréchiga, H. & Tsutsumi, V., 1979. Photomechanical migrations of pigment granules along the retinula cells of the crayfish Procambams. Journal of Comparative Physiology, 10, 573590.Google Scholar
Garfías, A., Rodríguez-Sosa, L. & Aréchiga, H., 1995. Modulation of crayfish retinal function by red pigment concentrating hormone. Journal of Experimental Biology, 198, 14471454.CrossRefGoogle ScholarPubMed
Glantz, R.M., 1968. Light adaptation in the photoreceptor of the crayfish Procambams clarkii. Vision Research, 8, 14071421.CrossRefGoogle Scholar
Glantz, R.M., 1971. Peripheral versus central adaptation in the crustacean visual system. Journal of Neurophysiology, 34, 485492.CrossRefGoogle ScholarPubMed
Glanzman, D.L. & Krasne, F.B., 1986. 5,7-Dihydroxytryptamine lesions of crayfish serotonin-containing neurons: effect on the lateral giant escape reaction. Journal of Neuroscience, 6, 15601569.CrossRefGoogle ScholarPubMed
Gorles-Kallen, J.L. & Voorter, C.E.M., 1986. The secretory dynamics of CHH-producing cell group in the eyestalk of the crayfish, Astacus leptodactylus, in the course of day/night cycle. Cell and Tissue Research, 241, 361366.CrossRefGoogle Scholar
Harris-Warrick, R.M., & Marder, E., 1991. Modulation of neural networks for behavior. Annual Review of Neuroscience, 14, 3957.CrossRefGoogle ScholarPubMed
Huber, R. & Kravitz, E.A., 1995. A quantitative analysis of agonistic behavior in juvenile american lobsters (Homarus americanus L.). Brain Behavior and Evolution, 46, 7283.CrossRefGoogle ScholarPubMed
Huberman, A., Aréchiga, H., Cimet, A., De La Rosa, J. & Aramburo, C., 1979. Isolation and purification of a neurodepressing hormone from the eyestalk of Procambams bouvieri (Ortmann). European Journal of Biochemistry, 99, 203208.CrossRefGoogle ScholarPubMed
Huxley, T.H., 1880. The crayfish. An introduction to the study of zoology, pp. 811. Cambridge: MIT Press. [Reprinted in 1977.]Google Scholar
Kalmus, H., 1938a. Über einen latenten physiologischen Farbwechsel beim Flußkrebes, Potamobius astacus, sowie seine hormonale Beeinflussung. Zeitschrift für Vergleichende Physiologie, 25, 784797.CrossRefGoogle Scholar
Kalmus, H., 1938b. Das Aktogramm des Flußkrebes und seine Beeinflussung durch Organextrakte. Zeitschrift für Vergleichende Physiologie, 25, 798802.CrossRefGoogle Scholar
Kravitz, E. A., 1988. Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. Science, New York, 241, 17751781.CrossRefGoogle ScholarPubMed
Kuffler, S.W. & Eyzaguirre, C., 1955. Synaptic inhibition in an isolated nerve cell. Journal of General Physiology, 39, 155184.CrossRefGoogle Scholar
Larimer, J.L., 1988. The command neuron: a new view, using an old example. Trends in Neuroscience, 11, 506510.CrossRefGoogle ScholarPubMed
Larimer, J.L. & Smith, J.T.F., 1980. Circadian rhythm of retinal sensitivity in crayfish: modulation by the cerebral and optic ganglia. Journal of Comparative Physiology, 136, 313326.CrossRefGoogle Scholar
Livingstone, M.S., Harris-Warrick, R.M. & Kravitz, E.A., 1980. Serotonin and octopamine produce opposite postures in lobsters. Science, New York, 208, 7679.CrossRefGoogle ScholarPubMed
Naylor, E., 1996. Crab clockwork: the case for interactive circatidal and circadian oscillators controlling rhythmic locomotor activity of Carcinus maenas. Chronobiology International, 13, 153161.CrossRefGoogle ScholarPubMed
Naylor, E. & Williams, B.G., 1968. Effects of eyestalk removal on rhythmic locomotor activity in Carcinus. Journal of Experimental Biology, 49, 107116.CrossRefGoogle Scholar
Olivo, R.F. & Larsen, M.E., 1978. Brief exposure to light initiates screening pigment migration in the retinula cells of crayfish, Procambarus. journal of Comparative Physiology, 125, 9196.CrossRefGoogle Scholar
Page, T.L. & Larimer, J.L., 1972. Entrainment of the circadian locomotor activity rhythm in the crayfish. The role of the eyes and caudal receptor. Journal of Comparative Physiology, 78, 107120.CrossRefGoogle Scholar
Page, T.L. & Larimer, J.L., 1976. Extraretinal photoreception in entrainment of crustacean circadian rhythms. Photochemistry and Photobiology, 23, 245251.CrossRefGoogle ScholarPubMed
Palmer, J.D., 1991. Contributions made to chronobiology by studies of fiddler crab rhythms. Chronobiology International, 8, 110130.CrossRefGoogle ScholarPubMed
Palmer, J.D., 1995. Review of the dual-clock control of tidal rhythms and the hypothesis that the same clock governs both circatidal and circadian rhythms. Chronobiology International, 12, 299310.CrossRefGoogle Scholar
Palmer, J.D. & Williams, B.G., 1987. Comparative studies of tidal rhythms. III. Spontaneous splitting of the peaks of crab locomotory rhythms. Marine Behavior and Physiology, 13, 6375.CrossRefGoogle Scholar
Pasztor, V.M. & Bush, B.M.H., 1989. Primary afferent responses of a crustacean mechanoreceptor are modulated by proctolin, octopamine and serotonin. Journal of Neurobiology, 20, 234254.CrossRefGoogle ScholarPubMed
Pollard, T.G. & Larimer, J.L., 1977. Circadian rhythmicity of heart rate in the crayfish, Procambarus clarkii. Comparative Biochemistry and Physiology, 57A, 221226.CrossRefGoogle Scholar
Rao, K.R. & Riehm, J.P., 1989. The pigment-dispersing hormone family: chemistry, structure-activity relations, and distribution. Biological Bulletin. Marine Biological Laboratory, Woods Hole, 177, 225229.CrossRefGoogle Scholar
Reid, D.G. & Naylor, E., 1990. Entrainment of bimodal circatidal rhythms in the shore crab Carcinus maenas. journal of Biological Rhythms, 5, 333347.CrossRefGoogle ScholarPubMed
Rodríguez-Sosa, L. & Aréchiga, H., 1982. Range of modulation of light sensitivity by accessory pigments in the crayfish compound eye. Vision Research, 22, 15151524.CrossRefGoogle ScholarPubMed
Rodríguez-Sosa, L., De La Vega, T. & Aréchiga, H., 1994. Circadian rhythm of content of red pigment-concentrating hormone. Comparative Biochemistry and Physiology, 109, 19.Google Scholar
Sánchez, J. & Fuentes-Pardo, B., 1977. Circadian rhythm in the amplitude of the electroretinogram in the isolated eyestalk of the crayfish. Comparative Biochemistry and Physiology, 56A, 601605.CrossRefGoogle Scholar
Simon, T.W. & Edwards, D.H., 1990. Light-evoked walking in crayfish: behavioral and neuronal responses triggered by the caudal photoreceptor. Journal of Comparative Physiology, 166A, 745755.Google Scholar
Wiersma, C.A.G., Roach, J. & Glantz, R.M., 1982. Neural integration in the optic system. In The biology of Crustacea, vol. 4 (ed. D.C., Sandeman and H.L., Atwood), pp. 131. New York: Academic Press.Google Scholar
Williams, J. A., Pullin, R.S.V., Naylor, E., Smith, G. & Williams, B.G., 1979. The role of Hanstroms organ in clock control in Carcinus maenas. In Cyclic phenomena in marine plants and animals (ed. E., Naylor and R.G., Hartnoll), pp. 459466. Oxford: Pergamon Press.CrossRefGoogle Scholar
Yeh, S.-R., Fricke, R.A. & Edwards, D.H., 1996. The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Science, New York, 271, 366369.CrossRefGoogle ScholarPubMed
Zhang, B. & Harris-Warrick, R.M., 1994. Multiple receptors mediate the modulatory effects of serotonergic neurons in a small neural network. Journal of Experimental Biology, 190, 5577.CrossRefGoogle Scholar