Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T16:59:15.272Z Has data issue: false hasContentIssue false

Random expected utility and certainty equivalents: mimicry of probability weighting functions

Published online by Cambridge University Press:  01 January 2025

Nathaniel T. Wilcox*
Affiliation:
Economic Science Institute, Chapman University, Orange, CA 92866, USA

Abstract

For simple prospects routinely used for certainty equivalent elicitation, random expected utility preferences imply a conditional expectation function that can mimic deterministic rank-dependent preferences. That is, a subject with random expected utility preferences can have expected certainty equivalents exactly like those predicted by rank-dependent probability weighting functions of the inverse-s shape discussed by Quiggin (J Econ Behav Organ 3:323–343, 1982) and advocated by Tversky and Kahneman (J Risk Uncertainty 5:297–323, 1992), Prelec (Econometrica 66:497–527, 1998) and other scholars. Certainty equivalents may not nonparametrically identify preferences: Their conditional expectation (and critically, their interpretation) depends on assumptions concerning the source of their variability.

Type
Original Paper
Copyright
Copyright © Economic Science Association 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s40881-017-0042-1) contains supplementary material, which is available to authorized users.

I am grateful to the Economic Science Institute and Chapman University for their ongoing support. Jose Apesteguia, Mattias Del Campo Axelrod, Miguel A. Ballester, Sudeep Bhatia, Michael Birnbaum, Daniel Cavagnaro, Mark DeSantis, Glenn W. Harrison, Anthony Marley, Kevin Mumford, John P. Nolan and Mark Schneider provided help or commentary, though none are responsible for remaining errors.

References

Abdellaoui, M. (2000). Parameter-free elicitation of utility and probability weighting functions. Management Science, 46, 14971512. 10.1287/mnsc.46.11.1497.12080CrossRefGoogle Scholar
Abdellaoui, M., Bleichrodt, H., Paraschiv, C. (2007). Loss aversion under prospect theory: a parameter-free measurement. Management Science, 53, 16591674. 10.1287/mnsc.1070.0711CrossRefGoogle Scholar
Ahn, D. S., Sarver, T. (2013). Preference for flexibility and random choice. Econometrica, 81, 341361. 10.3982/ECTA10431Google Scholar
Apesteguia, J., & Ballester, M. (2016). Monotone stochastic choice models: The case of risk and time preferences. Journal of Political Economy (forthcoming).Google Scholar
Becker, G. M., DeGroot, M. H., Marschak, J. (1963). Stochastic models of choice behaviour. Behavioral Science, 8, 4155. 10.1002/bs.3830080106CrossRefGoogle Scholar
Blavatskyy, P., Pogrebna, G. (2010). Models of stochastic choice and decision theories: why both are important for analyzing decisions. Journal of Applied Econometrics, 25, 963986. 10.1002/jae.1116CrossRefGoogle Scholar
Bleichrodt, H., Pinto, J. L. (2000). A parameter-free estimation of the probability weighting function in medical decision analysis. Management Science, 46, 14851496. 10.1287/mnsc.46.11.1485.12086CrossRefGoogle Scholar
Bruhin, A., Fehr-Duda, H., Epper, T. (2010). Risk and rationality: uncovering heterogeneity in probability distortion. Econometrica, 78, 13751412. 10.3982/ECTA7139Google Scholar
Butler, D., Loomes, G. (2007). Imprecision as an account of the preference reversal phenomenon. American Economic Review, 97, 277297. 10.1257/aer.97.1.277CrossRefGoogle Scholar
Eliashberg, J., Hauser, J. R. (1985). A measurement error approach for modeling consumer risk preference. Management Science, 31, 125. 10.1287/mnsc.31.1.1CrossRefGoogle Scholar
Feller, W. (1971). An introduction to probability theory and its applications, Vol. 2, 2nd ed, New York: Wiley.Google Scholar
Fox, C. R., Poldrack, R. A., & Glimcher, P., Camerer, C., Fehr, E., Poldrack, R. (2009). Prospect theory and the brain Neuroeconomics: decision making and the brain, London, UK: Academic.Google Scholar
Gonzalez, R., Wu, G. (1999). On the shape of the probability weighting function. Cognitive Psychology, 38, 129166. 10.1006/cogp.1998.0710CrossRefGoogle ScholarPubMed
González-Velasco, E. A. (1995). Fourier analysis and boundary value problems, San Diego: Academic.Google Scholar
Gul, F., Pesendorfer, W. (2006). Random expected utility. Econometrica, 74, 121146. 10.1111/j.1468-0262.2006.00651.xCrossRefGoogle Scholar
Halevy, Y. (2007). Ellsberg revisited: an experimental study. Econometrica, 75, 503536. 10.1111/j.1468-0262.2006.00755.xCrossRefGoogle Scholar
Hendry, D. F., Morgan, M. S. (2005). The foundations of econometric analysis, Cambridge: Cambridge University Press.Google Scholar
Hilton, R. W. (1989). Risk attitude under random utility. Journal of Mathematical Psychology, 33, 206222. 10.1016/0022-2496(89)90031-XCrossRefGoogle Scholar
Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable distributions. Biometrika, 73, 387396. 10.1093/biomet/73.2.387CrossRefGoogle Scholar
Karni, E., Safra, Z. (2016). A theory of stochastic choice under uncertainty. Journal of Mathematical Economics, 63, 164173. 10.1016/j.jmateco.2016.02.001CrossRefGoogle Scholar
Krahnen, J. P., Rieck, C., Theissen, E. (1997). Inferring risk attitudes from certainty equivalents: some lessons from an experimental study. Journal of Economic Psychology, 18, 469486. 10.1016/S0167-4870(97)00019-6CrossRefGoogle Scholar
Loomes, G., Moffatt, P., Sugden, R. (2002). A microeconometric test of alternative stochastic theories of risky choice. Journal of Risk and Uncertainty, 24, 103130. 10.1023/A:1014094209265CrossRefGoogle Scholar
Loomes, G., Sugden, R. (1995). Incorporating a stochastic element into decision theories. European Economic Review, 39, 641648. 10.1016/0014-2921(94)00071-7CrossRefGoogle Scholar
Loomes, G., Sugden, R. (1998). Testing different stochastic specifications of risky choice. Economica, 65, 581598. 10.1111/1468-0335.00147CrossRefGoogle Scholar
Luce, R. D. (1997). Some unresolved conceptual problems in mathematical psychology. Journal of Mathematical Psychology, 41, 7987. 10.1006/jmps.1997.1150CrossRefGoogle Scholar
Luce, R. D. (2000). Utility of gains and losses: measurement-theoretical and experimental approaches, London, UK: Erlbaum.Google Scholar
Navarro-Martinez, D., Loomes, G., Isoni, A., Butler, D., & Alaoui, L. (2017). Boundedly rational expected utility theory. MPRA Paper No. 79893.Google Scholar
Nelder, J. A., Mead, R. (1965). A simplex method for function minimization. Computer Journal, 7, 308313. 10.1093/comjnl/7.4.308CrossRefGoogle Scholar
Nielson, W. S. (2003). Probability transformations in the study of behavior toward risk. Synthese, 135, 171192. 10.1023/A:1023408906789CrossRefGoogle Scholar
Nolan, J. P. (2018). Stable distributions—Models for heavy tailed data, Boston: Birkhauser (forthcoming).Google Scholar
Pennings, J. M. E., Smidts, A. (2000). Assessing the construct validity of risk attitude. Management Science, 46, 13371348. 10.1287/mnsc.46.10.1337.12275CrossRefGoogle Scholar
Powell, M. J. D. (1992). A direct search optimization method that models the objective and constraint functions by linear interpolation. Technical Report DAMTP 1992/NA5, Department of Applied Mathematics and Theoretical Physics, University of Cambridge.Google Scholar
Prelec, D. (1998). The probability weighting function. Econometrica, 66, 497527. 10.2307/2998573CrossRefGoogle Scholar
Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior & Organization, 3, 323343. 10.1016/0167-2681(82)90008-7CrossRefGoogle Scholar
Regenwetter, M., Dana, J., Davis-Stober, C. P. (2011). Transitivity of preferences. Psychological Review, 118, 4256. 10.1037/a0021150CrossRefGoogle ScholarPubMed
Regenwetter, M., Marley, A. A. J. (2001). Random relations, random utilities and random functions. Journal of Mathematical Psychology, 45, 864912. 10.1006/jmps.2000.1357CrossRefGoogle Scholar
Tversky, A., Fox, C. R. (1995). Weighing risk and uncertainty. Psychological Review, 102, 269283. 10.1037/0033-295X.102.2.269CrossRefGoogle Scholar
Tversky, A., Kahneman, D. (1992). Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297323. 10.1007/BF00122574CrossRefGoogle Scholar
Vieider, F. M., Lefebvre, M., Bouchouicha, R., Chmura, T., Hakimov, R., Krawczyk, M., Martinsson, P. (2015). Common components of risk and uncertainty attitudes across contexts and domains: evidence from 30 countries. Journal of the European Economic Association, 13, 421452. 10.1111/jeea.12102CrossRefGoogle Scholar
von Winterfeldt, D., Chung, N.-K., Luce, R. D., Cho, Y.-H. (1997). Tests of consequence monotonicity in decision making under uncertainty. Journal of Experimental Psychology. Learning, Memory, and Cognition, 23, 406426. 10.1037/0278-7393.23.2.406CrossRefGoogle ScholarPubMed
Wakker, P. (2010). Prospect Theory: For Risk and Ambiguity, Cambridge, UK: Cambridge University Press 10.1017/CBO9780511779329CrossRefGoogle Scholar
Wilcox, N. (2008). Stochastic models for binary discrete choice under risk: A critical primer and econometric comparison. In Cox, J. C. & Harrison, G. W. (Eds.), Research in Experimental Economics. Risk Aversion in Experiments (Vol. 12. pp. 197292). Bingley, UK: Emerald.Google Scholar
Wilcox, N. (2011). ‘Stochastically more risk averse:’ A contextual theory of stochastic discrete choice under risk. Journal of Econometrics, 162, 89104. 10.1016/j.jeconom.2009.10.012CrossRefGoogle Scholar
Wilcox, N. (2015). Unusual estimates of probability weighting functions. Chapman University, Economic Science Institute Working Paper #15-10.Google Scholar
Wu, G., Gonzalez, R. (1999). Nonlinear decision weights in choice under uncertainty. Management Science, 45, 7485. 10.1287/mnsc.45.1.74CrossRefGoogle Scholar
Supplementary material: File

Wilcox supplementary material

Wilcox supplementary material
Download Wilcox supplementary material(File)
File 14.6 MB