Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T21:34:03.409Z Has data issue: false hasContentIssue false

The Π3-theory of the -enumeration degrees is undecidable

Published online by Cambridge University Press:  12 March 2014

Thomas F. Kent*
Affiliation:
Department of Mathematics, Brigham Young University, Provo, UT 84602., USA, E-mail: [email protected]

Abstract

We show that in the language of { ≤ }. the Π3-fragment of the first order theory of the -enumeration degrees is undecidable. We then extend this result to show that the Π3-theory of any substructure of the enumeration degrees which contains the -degrees is undecidable.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ahmad, S., Some results on enumeration reducibility, Ph.D. thesis, Simon Frasier University, 1989.Google Scholar
[2]Ahmad, S., Embedding the diamond in the enumeration degrees, this Journal, vol. 56 (1991), no. 1, pp. 195212.Google Scholar
[3]Ahmad, S. and Lachlan, A. H., Some special pairs of e-degrees, Mathematical Logic Quarterly, vol. 44 (1998), no. 4, pp. 431449.CrossRefGoogle Scholar
[4]Case, J., Enumeration reducibility and partial degrees, Archive for Mathematical Logic, vol. 2 (1971), pp. 419439.CrossRefGoogle Scholar
[5]Cooper, S., Partial degrees and the density problem, part II: The enumeration degrees of the sets are dense, this Journal, vol. 49 (1984), no. 2, pp. 503513.Google Scholar
[6]Lachlan, A. H., Lower bounds for pairs of recursively enumerable degrees, Proceedings of the London Mathematical Society, vol. 16 (1966), pp. 537569.CrossRefGoogle Scholar
[7]Lachlan, A. H. and Shore, R., The n-rea enumeration degrees are dense, Archive for Mathematical Logic, vol. 31 (1992), no. 4, pp. 277285.CrossRefGoogle Scholar
[8]Lempp, S. and Nies, A., The undecidability of the Π4-theory for the r.e. wtt- and Turing-degrees, this Journal, vol. 60 (1995), no. 4, pp. 11181136.Google Scholar
[9]Lempp, S., Nies, A., and Slaman, T., The Π3-theory of the computably enumerable Turing degrees is undecidable, Transactions of the American Mathematical Society, vol. 350 (1998), no. 7, pp. 27192736.CrossRefGoogle Scholar
[10]Lempp, S., Slaman, T., and Sorbi, S., On extensions of embeddings into the enumeration degrees of the -sets, Journal of Mathematical Logic, vol. 5 (2005), no. 2, pp. 247298.CrossRefGoogle Scholar
[11]Lempp, S. and Sorbi, A., Embedding finite lattices into the enumeration degrees, this Journal, vol. 67 (2002), no. 1. pp. 6990.Google Scholar
[12]McEvoy, K., Jumps of quasi-minimal enumeration degrees, this Journal, vol. 50 (1985), no. 3, pp. 839848.Google Scholar
[13]McEvoy, K. and Cooper, S., On minimal pairs of enumeration-degrees, this Journal, vol. 50 (1985), no. 4, pp. 839848.Google Scholar
[14]Nies, A., Undecidable fragments of elementary theories, Algebra Universalis, vol. 35 (1996), no. 1, pp. 833.CrossRefGoogle Scholar
[15]Sacks, G. E., On the degrees less than 0′, Annals of Mathematics, vol. 77 (1963), pp. 211231.CrossRefGoogle Scholar
[16]Slaman, T. and Woodin, W., Definability in the enumeration degrees, Archive for Mathematical Logic, vol. 36 (1997), no. 4-5, pp. 255267, Sacks Symposium (Cambridge, MA, 1993).CrossRefGoogle Scholar
[17]Soare, R. I., Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987.CrossRefGoogle Scholar