Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T21:36:23.933Z Has data issue: false hasContentIssue false

Turbulent convective flows in the solar photospheric plasma

Published online by Cambridge University Press:  30 July 2015

A. Caroli
Affiliation:
Department of Physics, University of Rome Tor Vergata, Roma, I-00133, Italy
F. Giannattasio
Affiliation:
INAF-Institute for Space Astrophysics and Planetology, Roma, I-00133, Italy
M. Fanfoni
Affiliation:
Department of Physics, University of Rome Tor Vergata, Roma, I-00133, Italy
D. Del Moro
Affiliation:
Department of Physics, University of Rome Tor Vergata, Roma, I-00133, Italy
G. Consolini
Affiliation:
INAF-Institute for Space Astrophysics and Planetology, Roma, I-00133, Italy
F. Berrilli*
Affiliation:
Department of Physics, University of Rome Tor Vergata, Roma, I-00133, Italy
*
Email address for correspondence: [email protected]

Abstract

The origin of the 22-year solar magnetic cycle lies below the photosphere where multiscale plasma motions, due to turbulent convection, produce magnetic fields. The most powerful intensity and velocity signals are associated with convection cells, called granules, with a scale of typically 1 Mm and a lifetime of a few minutes. Small-scale magnetic elements (SMEs), ubiquitous on the solar photosphere, are passively transported by associated plasma flows. This advection makes their traces very suitable for defining the convective regime of the photosphere. Therefore the solar photosphere offers an exceptional opportunity to investigate convective motions, associated with compressible, stratified, magnetic, rotating and large Rayleigh number stellar plasmas. The magnetograms used here come from a Hinode/SOT uninterrupted 25-hour sequence of spectropolarimetric images. The mean-square displacement of SMEs has been modelled with a power law with spectral index ${\it\gamma}$ . We found ${\it\gamma}=1.34\pm 0.02$ for times up to ${\sim}2000~\text{s}$ and ${\it\gamma}=1.20\pm 0.05$ for times up to ${\sim}10\,000~\text{s}$ . An alternative way to investigate the advective–diffusive motion of SMEs is to look at the evolution of the two-dimensional probability distribution function (PDF) for the displacements. Although at very short time scales the PDFs are affected by pixel resolution, for times shorter than ${\sim}2000~\text{s}$ the PDFs seem to broaden symmetrically with time. In contrast, at longer times a multi-peaked feature of the PDFs emerges, which suggests the non-trivial nature of the diffusion–advection process of magnetic elements. A Voronoi distribution analysis shows that the observed small-scale distribution of SMEs involves the complex details of highly nonlinear small-scale interactions of turbulent convective flows detected in solar photospheric plasma.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramenko, V. I., Carbone, V., Yurchyshyn, V., Goode, P. R., Stein, R. F., Lepreti, F., Capparelli, V. & Vecchio, A. 2011 Turbulent diffusion in the photosphere as derived from photospheric bright point motion. Astrophys. J. 743, 133.CrossRefGoogle Scholar
Ahlers, G. 2009 Turbulent convection. Phys. Online J. 2, 74.Google Scholar
Beeck, B., Collet, R., Steffen, M., Asplund, M., Cameron, R. H., Freytag, B., Hayek, W., Ludwig, H.-G. & Schüssler, M. 2012 Simulations of the solar near-surface layers with the CO5BOLD, MURaM, and Stagger codes. Astron. Astrophys. 539, A121.Google Scholar
Berger, T. E., Löfdahl, M. G., Shine, R. A. & Title, A. M. 1998 Measurements of solar magnetic element dispersal. Astrophys. J. 506, 439449.Google Scholar
Berrilli, F., Consolini, G., Pietropaolo, E., Caccin, B., Penza, V. & Lepreti, F. 2002 2-D multiline spectroscopy of the solar photosphere. Astron. Astrophys. 381, 253264.Google Scholar
Berrilli, F., Del Moro, D., Consolini, G., Pietropaolo, E., Duvall, T. L. Jr & Kosovichev, A. G. 2004 Structure properties of supergranulation and granulation. Solar Phys. 221 (1), 3345.Google Scholar
Berrilli, F., del Moro, D., Florio, A. & Santillo, L. 2005 Segmentation of photospheric and chromospheric solar features. Solar Phys. 228 (1–2), 8195.Google Scholar
Berrilli, F., Scardigli, S. & Giordano, S. 2013 Multiscale magnetic underdense regions on the solar surface: granular and mesogranular scales. Solar Phys. 282 (2), 379387.Google Scholar
Berrilli, F., Scardigli, S. & Del Moro, D. 2014 Magnetic pattern at supergranulation scale: the void size distribution. Astron. Astrophys. 568, A102.Google Scholar
Cadavid, A. C., Lawrence, J. K., Ruzmaikin, A. A., Walton, S. R. & Tarbell, T. 1998 Spatiotemporal correlations and turbulent photospheric flows from SOHO/MDI velocity data. Astrophys. J. 509, 918926.Google Scholar
Cadavid, A. C., Lawrence, J. K. & Ruzmaikin, A. A. 1999 Anomalous diffusion of solar magnetic elements. Astrophys. J. 521, 844850.Google Scholar
Cattaneo, F., Emonet, T. & Weiss, N. 2003 On the interaction between convection and magnetic fields. Astrophys. J. 588, 11831198.Google Scholar
Charbonneau, P. 2010 Dynamo models of the solar cycle. Living Rev. Solar Phys. 7, 3.CrossRefGoogle Scholar
Chiu, S. N., Stoyan, D., Kendall, W. S. & Mecke, J. 2013 Stochastic Geometry and its Applications, 3rd edn. Wiley.Google Scholar
Consolini, G., Berrilli, F., Florio, A., Pietropaolo, E. & Smaldone, L. A. 2003 Information entropy in solar atmospheric fields. Part I. Intensity photospheric structures. Astron. Astrophys. 402, 11151127.Google Scholar
Del Moro, D. 2004 Solar granulation properties derived from three different time series. Astron. Astrophys. 428, 10071015.Google Scholar
Del Moro, D., Giannattasio, F., Berrilli, F., Consolini, G., Lepreti, F. & Gošić, M. 2015 Super-diffusion versus competitive advection: a simulation. Astron. Astrophys. 576, A47.Google Scholar
Giannattasio, F., Del Moro, D., Berrilli, F., Bellot Rubio, L., Gošić, M. & Orozco Suárez, D. 2013 Diffusion of solar magnetic elements up to supergranular spatial and temporal scales. Astrophys. J. 770, L36.Google Scholar
Giannattasio, F., Stangalini, M., Berrilli, F., Del Moro, D. & Bellot Rubio, L. 2014 Diffusion of magnetic elements in a supergranular cell. Astrophys. J. 788, 137.Google Scholar
Giannattasio, F., Berrilli, F., Biferale, L., Del Moro, D., Sbragaglia, M., Bellot Rubio, L., Gošić, M. & Orozco Suárez, D. 2014 Pair separation of magnetic elements in the quiet Sun. Astron. Astrophys. 569, A121.Google Scholar
Gošić, M.2012 Properties and evolution of magnetic elements in the solar internetwork. Master’s thesis, University of Granada.Google Scholar
Hagenaar, H. J., Schrijver, C. J., Title, A. M. & Shine, R. A. 1999 Dispersal of magnetic flux in the quiet solar photosphere. Astrophys. J. 511, 932944.Google Scholar
Kaiser, A. & Schreiber, T. 2002 Information transfer in continuous processes. Physica D 166, 4362.Google Scholar
Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S., Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto, K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J. M., Hill, L. D., Owens, J. K., Title, A. M., Culhane, J. L., Harra, L. K., Doschek, G. A. & Golub, L. 2007 The Hinode (Solar-B) mission: an overview. Solar Phys. 243, 317.Google Scholar
Kullback, S. & Leibler, R. A 1951 On information and sufficiency. Ann. Math. Statist. 22, 79.Google Scholar
Lawrence, J. K., Cadavid, A. C., Ruzmaikin, A. & Berger, T. E. 2001 Spatiotemporal scaling of solar surface flows. Phys. Rev. Lett. 86, 58945897.Google Scholar
Manso Sainz, R., Martínez González, M. J. & Asensio Ramos, A. 2011 Advection and dispersal of small magnetic elements in the very quiet Sun. Astron. Astrophys. 531, L9.Google Scholar
Nordlund, Å, Stein, R. F. & Asplund, M. 2009 Solar surface convection. Living Rev. Solar Phys. 6, 2.Google Scholar
Parker, E. N. 1955 Hydromagnetic dynamo models. Astrophys. J. 122, 293.Google Scholar
Petrovay, K. 2001 Turbulence in the solar photosphere. Space Sci. Rev. 95, 9.Google Scholar
Petrovay, K. 2005 The Sun as a laboratory for turbulence theory: the problem of anomalous diffusion. In Publications of the Astronomy Department of the Eötvös University (PADEU) (ed. Ballai, I., Forgács-Dajka, E., Marcu, A. & Petrovay, K.), vol. 15, p. 53.Google Scholar
Rapaport, D. C. 2006 Hexagonal convection patterns in atomistically simulated fluids. Phys. Rev. E 73, 025301R.Google Scholar
Sánchez Almeida, J., Bonet, J. A., Viticchié, B. & Del Moro, D. 2010 Magnetic bright points in the quiet Sun. Astrophys. J. 715, L26L29.CrossRefGoogle Scholar
Schrijver, C. J. & Martin, S. F. 1990 Properties of the large- and small-scale flow patterns in and around AR 19824. Solar Phys. 129, 95112.Google Scholar
Tanemura, M. 2003 Statistical distributions of Poisson Voronoi cells in two and three dimensions. Forma 18, 221.Google Scholar
Tsuneta, S., Ichimoto, K., Katsukawa, Y., Nagata, S., Otsubo, M., Shimizu, T., Suematsu, Y., Nakagiri, M., Noguchi, M., Tarbell, T., Title, A., Shine, R., Rosenberg, W., Hoffmann, C., Jurcevich, B., Kushner, G., Levay, M., Lites, B., Elmore, D., Matsushita, T., Kawaguchi, N., Saito, H., Mikami, I., Hill, L. D. & Owens, J. K. 2008 The solar optical telescope for the Hinode mission: an overview. Solar Phys. 249, 167196.Google Scholar
Wang, H. 1988 Structure of magnetic fields on the quiet Sun. Solar Phys. 116, 116.Google Scholar
Weaire, D., Kermode, J. P. & Wejchert, J. 1986 On the distribution of cell areas in a Voronoi network. Phil. Mag. B 53, L101.Google Scholar