Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T01:56:17.871Z Has data issue: false hasContentIssue false

Sheared flow-driven vortices and solitary waves in a non-uniform plasma with negative ions and non-thermal distributed electrons

Published online by Cambridge University Press:  21 December 2012

A. MUSHTAQ
Affiliation:
Department of Physics, Abdul Wali Khan University, Mardan 23200, Pakistan ([email protected]) National Center for Physics, Shahdrah Valley Road, Islamabad 44000, Pakistan
ATTAULLAH SHAH
Affiliation:
Institute of Physics & Electronics, University of Peshawar, Peshawar 25000, Pakistan

Abstract

The coupled drift-ion acoustic (DIA) waves in an inhomogeneous magnetoplasma having negative and positive ions can be driven by the parallel sheared flows in the presence of Cairns distributed non-thermal electrons. The coupled DIA waves can become unstable due to shear flows. The conditions of modes instability are discussed with effects of non-thermal electrons. These are the excited modes and start interactions among themselves. The interaction is governed by the Hasegawa–Mima equations with analytical solutions in the form of a vortex chain and dipolar vortex. On the other hand, for scalar nonlinearity the Kortweg deVries-type equation is obtained with solitary wave solution. Possible application of the work to the space and laboratory plasmas are highlighted.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cairns, R. A., Mamun, A. A., Bingham, R., Bostrom, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
Chmyrev, V. M., Bilichenko, S. V., Pokhotelov, O. A., Marchenko, V. A., Lazarev, V. I., Streltsov, A. V. and Stenflo, L. 1988 Phys. Scripta 38, 841.CrossRefGoogle Scholar
D’Angelo, N. 1992 IEEE Trans. Plasma Sci. 20, 568.CrossRefGoogle Scholar
D’Angelo, N. and Merlino, R. L. 1986 IEEE Trans. Plasma Sci. 14, 285.CrossRefGoogle Scholar
D’Angelo, N. and Song, B. 1991 IEEE Trans. Plasma Sci. 19, 42.CrossRefGoogle Scholar
D’Angelo, N., von Goeler, S. and Ohe, T. 1966 Phys. Fluids 9, 1605.CrossRefGoogle Scholar
Elifomov, A. G., Galvao, R. M. O., Nascimento, I. C. and Amarante-Segundo, G. 1997 Plasma Phys. Control. Fusion 39, 115.Google Scholar
Haque, Q., Saleem, H. and Mirza, A. M. 2005 Phys. Plasmas 12, 104504.CrossRefGoogle Scholar
Ichiki, R., Kaneko, T., Hayashi, K., Tamura, S. and Hatakeyama, R. 2009 Plasma Phys. Control. Fusion 51, 035011.CrossRefGoogle Scholar
Kim, S. H. and Merlino, R. L. 2007 Phys. Rev. E 76, 035401 (R).CrossRefGoogle Scholar
Liu, J. and Horton, W. 1986 J. Plasma Phys. 36, 1.CrossRefGoogle Scholar
Maslennikov, D. I., Mikhailenko, V. S. and Stepanov, K. N. 1997 Plasma Phys. Rep. 23, 1007.Google Scholar
Mikhailovskii, A. B. 1974 Theory of Plasma Instabilities, Vol. 2. New York: Plenum Press.CrossRefGoogle Scholar
Mirza, A. M., Farid, T., Shukla, P. K. and Stenflo, L., 2001 IEEE Trans. Plasma Sci. 29, 298.CrossRefGoogle Scholar
Mishra, K. and Chhabra, R. S. 1996 Phys. Plasmas 3, 4446.Google Scholar
Mushtaq, A. 2008 Phys. Plasmas 15, 082313.CrossRefGoogle Scholar
Nakamura, Y. and Tsukabayashi, I. 1984 Phys. Rev. Lett. 52, 2356.CrossRefGoogle Scholar
Nakamura, Y., Tsukabayashi, I., Ludwig, G. O. and Fereira, J. L. 1985 Phys. Letts. 113A, 155.CrossRefGoogle Scholar
Oohara, W. and Hatakeyama, R. 2003 Phys. Rev. Lett. 91, 205005; Oohara, W., Date, D. and Hatakeyama, R. 2005 Phys. Rev. Lett. 95, 175003; Oohara, W. and Hatakeyama, R. 2007 Phys. Plasmas 14, 055704.Google Scholar
Peterson, W. K., Yau, M. W. and Whalen, B. A. 1993 J. Geophys. Res. 98, 11177.Google Scholar
Petviashvili, V. I. and Pokhotelov, O. A. 1992 Solitary Waves in Plasmas and in the Atmosphere. New York: Gordon and Breach.Google Scholar
Pokhotelov, O. A., Onishchenko, O. G., Balikhin, M. A., Stenflo, L. and Shukla, P. K. 2007 J. Plasma Phys. 73, 981.CrossRefGoogle Scholar
Pokhotelov, O. A., Stenflo, L. and Shukla, P. K. 1996 Plasma Phys. Rep. 22, 852.Google Scholar
Sauer, K., Dubinin, E., Baumgärtel, K. and Tarasov, V. 1998 Earth Plan. Space 50, 269.CrossRefGoogle Scholar
Shukla, P. K., Farid, T., Stenflo, L. and Onishchenko, O. G. 2000 J. Plasma Phys. 64, 427.CrossRefGoogle Scholar
Shukla, P. K., Sorasio, G. and Stenflo, L. 2002 Phys. Rev. E 66, 067401.CrossRefGoogle Scholar
Song, B., D’Angelo, N. and Merlino, R. L. 1991a Phys. Fluids B 3, 284.CrossRefGoogle Scholar
Song, B., Merlino, R. L. and D’Angelo, N. 1991b Phys. Lett. A 153, 233.CrossRefGoogle Scholar
Song, B., Suszcynsky, D., D’Angelo, N. and Merlino, R. L. 1989 Phys. Fluids B 1, 2316.CrossRefGoogle Scholar
Vranjes, J. and Poedts, S. 2005 Plasma Sources Sci. Technol. 14, 485.CrossRefGoogle Scholar
Wong, A. Y., Mamas, D. L. and Arnush, D. 1975 Phys. Fluids 18, 1489.CrossRefGoogle Scholar