Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-06T13:02:42.578Z Has data issue: false hasContentIssue false

Laser-induced profile modifications in magnetized plasmas

Published online by Cambridge University Press:  13 March 2009

N. N. Rao
Affiliation:
Institut für Theoretische Physik, Ruhr-Universität Bochum, D-4630 Bochum, Federal Republic ofGermany
P. K. Shukla
Affiliation:
Institut für Theoretische Physik, Ruhr-Universität Bochum, D-4630 Bochum, Federal Republic ofGermany
M. Y. Yu
Affiliation:
Institut für Theoretische Physik, Ruhr-Universität Bochum, D-4630 Bochum, Federal Republic ofGermany

Abstract

An analysis of profile modifications in laser-plasma interactions in the presence of an externally applied constant d.c. magnetic field is presented. By considering the case of circular polarization for the incident laser light, the flow velocities and the shelf densities in the incident as well as the evanescent regions are calculated. For left-handed circular polarization, the flow velocity in the incident region is enhanced by the magnetic field, whereas the opposite occurs for right-handed circular polarization. On the other hand, the shelf density in the evanescent region is always supercritical for the former case, and for the latter case it can be either subcriticai or supercritical, depending on the strengths of the incident laser intensity as well as the external magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fedosejevs, R., Burgess, M. D. J., Enright, G. D. & Richardson, M. C. 1979 Phys. Rev. Lett. 43, 1664.CrossRefGoogle Scholar
Forslund, D. W., Kindel, J. M., Lee, K. & Lindman, E. L. 1976 Phys. Rev. Lett. 36, 35.CrossRefGoogle Scholar
Gradov, O. M. & Stenflo, L. 1983 Phys. Lett. A 95, 233.CrossRefGoogle Scholar
Gradov, O. M. & Stenflo, L. 1984 Physica Scripta, 29, 73.CrossRefGoogle Scholar
Jones, R. D., Aldrich, C. H. & Lee, K. 1981 Phys. Fluids, 24, 310.CrossRefGoogle Scholar
Kidder, R. E. 1975 Proceedings of the Japan-U.S. Seminar on Laser Interactions with Matter, Tokyo, p. 331. Tokyo International Book Company.Google Scholar
Kruer, W. L. 1982 Phys. Fluids, 25, 2324.CrossRefGoogle Scholar
Kruer, W. L. & Estabrook, E. 1977 Phys. Fluids, 20, 1688.CrossRefGoogle Scholar
Lee, K., Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1977 Phys. Fluids, 20, 51.CrossRefGoogle Scholar
Max, C. E. & McKee, C. F. 1977 Phys. Rev. Lett. 39, 1336.CrossRefGoogle Scholar
Mulser, P. & van Kessel, C. 1977 Phys. Rev. Lett. 38, 902.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1984 a Phys. Fluids. (To be published.)Google Scholar
Rao, N. N., Yu, M. Y. & Shukla, P. K. 1984 b Phys. Fluids. (To be published.)Google Scholar
Sagdeev, R. Z. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 4, p. 23. Consultants Bureau.Google Scholar
Sanmartin, J. R. & Montañes, J. L. 1980 Phys. Fluids, 23, 2413.CrossRefGoogle Scholar
Shoucri, M. & Kuehl, H. H. 1980 Phys. Fluids, 23, 2461.CrossRefGoogle Scholar
Shukla, P. K. & Spatschek, K. H. 1978 J. Plasma Phys. 19, 387.CrossRefGoogle Scholar
Shukla, P. K. & Yu, M. Y. 1984 Plasma Phys. & Controlled Fusion, 26, 841.CrossRefGoogle Scholar
Stellingwerf, R., Longmire, C. & Alme, M. 1981 Phys. Fluids, 24, 2329.CrossRefGoogle Scholar
Stroscio, M. A., Lee, K. & Lindman, E. L. 1978 Phys. Fluids, 21, 1509.CrossRefGoogle Scholar
Virmont, J., Pellat, R. & Mora, A. 1978 Phys. Fluids, 21, 567.CrossRefGoogle Scholar