Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T04:21:11.965Z Has data issue: false hasContentIssue false

Electromagnetic solitary waves in magnetized plasmas

Published online by Cambridge University Press:  13 March 2009

R. D. Hazeltine
Affiliation:
Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712
D. D. Holm
Affiliation:
Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545
P. J. Morrison
Affiliation:
Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, Texas 78712

Abstract

A Hamiltonian formulation, in terms of a non-canonical Poisson bracket, is presented for a nonlinear fluid system that includes reduced magnetohydro-dynamics and the Hasegawa–Mima equation as limiting cases. The single-helicity and axisymmetric versions possess three nonlinear Casimir invariants, from which a generalized potential can be constructed. Variation of the generalized potential yields a description of exact nonlinear stationary states. The new equilibria, allowing for plasma flow as well as partial electron adiabaticity, are distinct from those found in conventional magnetohydrodynamic theory. They differ from electrostatic stationary states in containing plasma current and magnetic field excitation. One class of steady-state solutions is shown to provide a simple electromagnetic generalization of drift-solitary waves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Charney, J. G. 1948 Geophys. Public. Kosjones Nors. Bidenshap.-Akad. Oslo, 17, 3.Google Scholar
Drake, J. F. & Antonsen, T. M. 1984 Phys. Fluids, 27, 898.CrossRefGoogle Scholar
Flierl, G. R., Larichev, V. D., McWilliams, J. C. & Reznik, G. M. 1979 Dyn. Atmos. Oceans, 3, 15.CrossRefGoogle Scholar
Hasegawa, A. & Mima, K. 1977 Phys. Rev. Lett. 39, 205.CrossRefGoogle Scholar
Hazeltine, R. D. 1983 Phys. Fluids, 26, 3242.CrossRefGoogle Scholar
Hazeltine, R. D., Kotschenreuther, M. & Morrison, P. J. 1984 a Institute for Fusion Studies Report IFSR No. 165, The University of Texas at Austin.Google Scholar
Hazeltine, R. D., Holm, D. D., Marsden, J. E. & Morrison, P. J. 1984 b ICPP Proceedings (Lausanne), 2, 204.Google Scholar
Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. 1985 Physics Rep. (To be published.)Google Scholar
Larichev, V. D. & Reznik, G. M. 1976 Dokl. Akad. Nauk SSSR, 231, 1077.Google Scholar
Marsden, J. E. & Morrison, P. J. 1984 Contemporary Mathematics, 28, 133. American Mathematical Society.CrossRefGoogle Scholar
Meiss, J. D. & Horton, W. 1983 Phys. Fluids, 26, 990.CrossRefGoogle Scholar
Mikhailovskii, A. B., Aburdzhaniya, G. D., Onishchenko, O. G. & Chikov, A. P. 1984 Phys. Lett. 101 A, 263.CrossRefGoogle Scholar
Mikhailovskii, A. B., Aburdzhaniya, G. D., Onishchenko, O. G. & Sharapov, S. E. 1984 Phys. Lett. 100 A, 503.CrossRefGoogle Scholar
Morrison, P. J. 1982 Mathematical Methods in Hydrodynamics and Integrability in Dynamical Systems (ed. Tabor, M. and Treve, Y.). AIP.Google Scholar
Morrison, P. J. & Hazeltine, R. D. 1984 Phys. Fluids, 27, 886.CrossRefGoogle Scholar
Pavlenko, V. P. & Petviashvili, V. I. 1984 Soviet J. Plasma Phys. 9, 603.Google Scholar
Strauss, H. R. 1976 Phys. Fluids, 19, 134.CrossRefGoogle Scholar
Strauss, H. R. 1977 Phys. Fluids, 20, 1354.CrossRefGoogle Scholar
Sudarshan, E. C. G. & Mukunda, N. 1974 Classical Mechanics – A Modern Perspective. Wiley. (2nd edition, Krieger, 1983).Google Scholar