Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T03:47:15.094Z Has data issue: false hasContentIssue false

Calculation of Average Collision Cross Sections of Low Energy for Elastic e-Ar Scattering Using MERT4

Published online by Cambridge University Press:  25 June 2014

S. Hassanpour*
Affiliation:
Faculty of Basic Sciences, Department of Physics, Nour Branch, Islamic Azad University, Nour 4817935861, Iran
S. Nguyen-Kuok
Affiliation:
Laboratory of Plasma Physics, National Research University MPEI, Krasnokazarmennya Str. 14, Moscow 111250, Russia
*
Email address for correspondence: [email protected]

Abstract

Cross sections in the very low energy range are also represented by the modified effective-range theory (MERT) for low-energy electron scattering from the rare gas (argon). Simulations using published (theoretical) phase shifts indicate that extended versions of the standard effective-range theory with four adjustable parameters are required to give an adequate description of the phase shifts for argon. A four-parameter MERT fit gives a good representation of a recent electron–argon (e-Ar) total cross section experiment at energies less than 10.0 eV. Cross section Q(l) (E) for collision in dilute gases is given for any order l. Here Q(l) (E) are presented for l = 1. . .6. We present calculations for the elastic cross sections for electron scattering from argon. The improvement in the agreement between our theoretical calculations and the experimental measurements in the case of argon in scattering calculations are showed. Differential scattering experiments have been performed for the systems e-Ar in the energy range E = 0–10 eV and the angular range θ = 0–20° using a crossed-beam arrangement. Differential and integrated cross sections for the elastic scattering of low- and intermediate-energy (0–50 eV) electrons by argon atoms are calculated. For each impact energy, the phase shifts of the lower partial waves are obtained exactly by numerical integration of the radial equation. Transport coefficients of argon plasma are requested exactly, which is why we calculated the average collision cross sections for s = 1. . .11, l = 1. . .6.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buckman, S. J. 1997 Aust. J. Phys. 50, 483.CrossRefGoogle Scholar
Buckman, S. J. and Lohmamnn, B. 1988 J. Phys. B: At. Mol. Opt. Phys. 20, 5807.Google Scholar
Buckman, S. J. and Mitroy, J. 1989 J. Phys. B: At. Mol. Opt. Phys. 22, 1365.CrossRefGoogle Scholar
Burke, P. G. 1977 Potential Scattering in Atomic Physics}. New York: Plenum Press.CrossRefGoogle Scholar
Dasgupta, A. et al. 1985 Phys. Rev.} A. 32, 3335.CrossRefGoogle Scholar
Devoto, R. S. 1967 Phys. Fluids 10, 354.Google Scholar
Ferch, J. et al. 1985 J. Phys. B: At. Mol. Phys. 18, 967.Google Scholar
Fon, W. C. et al. 1983 J. Phys. B: At. Mol. Phys. 16, 307.CrossRefGoogle Scholar
Gibson, J. C. et al. 1996 J. Phys. B: At. Mol. Opt. Phys. 29, 3177.CrossRefGoogle Scholar
Haddad, G. N. and O'Malley, T. F. 1982 Aust. J. Phys. 35, 35.CrossRefGoogle Scholar
Joachain, C. J. 1975 Quantum Collision Theory. Amsterdam: North-Holland Publishing Company.Google Scholar
Jablonski, A. et al. 2004 J. Phys. Chem. Ref. Data 33 (2).Google Scholar
Loyalka, S. K., Tipton, E. L. and Tompson, R. V. 2007 Physica} A 379, 417435.Google Scholar
Meeks, F. R. et al. 1994 J. Chem. Phys. 100 (5).CrossRefGoogle Scholar
Nahar, S. N. and Wadhera, J. M. 1987 Phys. Rev. 35, 2051.CrossRefGoogle Scholar
Nguyen-Kuok, S., Hassanpour, S. & Ageev, A. 2012 Abstract. In: Proc. XXI ESCAMPIG, Viana do Castelo, Portugal, 10 July–14 July 2012.Google Scholar
Nguyen-Kuok, S., Malakhov, Y. and Hassanpour, S. 2013 Abstract. In: Proc. XXXI ICPIG, Granada, Spain, 14 July–19 July 2013.Google Scholar
Petrovic, Z. et al. 1995 J. Phys. B: At. Mol. Opt. Phys. 28, 3309.CrossRefGoogle Scholar
Plenkiewicz, B. et al. 1988 Phys. Rev.} A. 38, 4460.Google Scholar
Thurston, M. O. 2006 Gaseous Electronics Theory and Practice, CRC Press.Google Scholar
Tipton, E. L., Tompson, R. V. and Loyalka, S. K. 2009 Eur. J. Mech. 28, 335352.Google Scholar
Tompson, R. V., Tipton, E. L. and Loyalka, S. K. 2009 Eur. J. Mech. 28, 695721.Google Scholar
Tompson, R. V., Tipton, E. L. and Loyalka, S. K. 2010 Eur. J. Mech. 29, 153179.Google Scholar
Wadehra, J. M. and Nahara, S. N. 1987 Phys. Rev.} A 36, 1458.CrossRefGoogle Scholar
Weyhreter, M. et al. 1988 Z. Phys. D: Atoms, Molecules and Clusters 7, 333.Google Scholar
Yau, A. W. et al. 1980 J. Phys. B: Atom. Molec. Phys. 13, 377.Google Scholar