Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T07:01:15.598Z Has data issue: false hasContentIssue false

Axial structure of surface-wave-sustained discharges influenced by local plasma resonances

Published online by Cambridge University Press:  13 March 2009

Yu. M. Aliev
Affiliation:
P. N. Lebedev Institute, Russian Academy of Sciences, 117924 Moscow, Russia
A. V. Maximov
Affiliation:
P. N. Lebedev Institute, Russian Academy of Sciences, 117924 Moscow, Russia
H. Schlüter
Affiliation:
Institute of Experimental Physics II, University Bochum, 44780 Bochum, Germany
A. Shivarova
Affiliation:
Faculty of Physics, Sofia University, 1126 Sofia, Bulgaria

Abstract

The influence of absorption of wave energy in regions of local plasma resonances in inhomogeneous (in the transverse direction) plasmas on the axial structure of discharges sustained by surface waves is studied analytically. The two regimes of charged-particle loss, namely diffusion- and recombinationcontrolled regimes, are considered. First, to extract the basic features of the phenomena, the discharge is modelled by a slab configuration and the case of slow surface-wave propagation is investigated. It is shown that it is resonant absorption that determines the properties of the discharge in the region towards its end. In the case of a cylindrical waveguide, which is the real configuration in experiments, the influence of the mechanism of resonant absorption is studied in both regions of fast and slow surface-wave propagation. With respect to the discharge behaviour, these cases correspond respectively to the regions at the beginning of the discharge close to the surface-wave launcher and at the discharge end.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliev, Yu. M. 1993 Microwave Discharges: Fundamentals and Applications (ed. Ferreira, C. M. & Moisan, M.), p. 105. Plenum.Google Scholar
Aliev, Yu. M., Berndt, J., Schlüter, H. & Shivarova, A. 1994 a J. Electromagn. Waves and Applics, in press.Google Scholar
Aliev, Yu. M., Boev, A. G. & Shivarova, A. P. 1982 Phys. Lett. 92A, 235.Google Scholar
Aliev, Yu. M., Boev, A. G. & Shivarova, A. P. 1984 J. Phys. D: Appl. Phys. 17, 2233.Google Scholar
Aliev, Yu. M., Bychenkov, V. Yu., Maximov, A. V. & Schlüter, H. 1992 Plasma Sources Sci. Technol. 1, 126.CrossRefGoogle Scholar
Aliev, Yu. M., Ghanashev, I., Schlüter, H., Shivarova, A. & Zethoff, M. 1994 b Plasma Sources Sci. Technol. 3, 216.Google Scholar
Aliev, Yu. M., Grosse, S., Maximov, A. V., Schlüter, H. & Shivarova, A. 1994 c ESCAMPIG Noordwijkerhout (ed. M. C. van de Sanden), Europ. Phys. Soc., Geneva, vol. 18E, p. 199.Google Scholar
Aliev, Yu. M., Ivanova, K. M., Moisan, M. & Shivarova, A. P. 1993 a Plasma Sources Sci. Technol. 2, 145.CrossRefGoogle Scholar
Aliev, Yu. M., Maximov, A. V. & Schlüter, H. 1993 b Physica Scripta 48, 464.CrossRefGoogle Scholar
Aliev, Yu. M., Maximov, A. V., Schlüter, H. & Shrvarova, A. 1994 d Physica Scripta, in press.Google Scholar
Biberman, L. M., Vorob'ev, V. S. & Iakubov, I. T. 1987 Kinetics of Nonequilibrium Low-Temperature Plasmas. Consultants Bureau.CrossRefGoogle Scholar
Ferreira, C. M. 1983 J. Phys. D: Appl. Phys. 16, 1673.Google Scholar
Ferreira, C. M. & Moisan, M. (EDS) 1993 Microwave Discharges: Fundamentals and Applications. Plenum.Google Scholar
Glaude, V. M. M., Moisan, M., Pantel, R., Leprince, P. & Marec, J. 1980 J. Appl. Phys. 51, 5693.CrossRefGoogle Scholar
Golant, V. E., Zhilinsky, A. P. & Sakharov, I. E. 1980 Fundamentals of Plasma Physics. Wiley.Google Scholar
Gurevich, A. V. 1978 Nonlinear Phenomena in the Ionosphere. Springer.Google Scholar
Moisan, M., Ferreira, C. M., Hajlaoui, Y., Henry, D., Hubert, J., Pantel, R., Ricard, A. & Zakrzewski, Z. 1982 Revue Phys. Appl. 17, 707.CrossRefGoogle Scholar
Moisan, M. & Zakrzewski, Z. 1986 Radiative Processes in Discharge Plamas (ed. Proud, J. M. & Luessen, L. H.), p. 381. Plenum.CrossRefGoogle Scholar
, A. B., Ferreira, C. M., Pasquiers, S., Boisse-Laporte, C., Leprince, P. & Marec, J. 1991 J. Appl. Phys. 70, 4147.Google Scholar
Shivarova, A. 1992 Spatial Dispersion in Solids and Plasmas (ed. Halevi, P.), p. 557. Elsevier.Google Scholar
Stepanov, K. N. 1965 Soviet Phys. Tech. Phys. 10, 773.Google Scholar
Zakrzewski, Z. 1983 J. Phys. D: Appl. Phys. 16, 171.Google Scholar
Zhelyazkov, I., Benova, E. & Atannasov, V. 1986 J. Appl. Phys. 59, 1466.Google Scholar