Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T10:31:29.375Z Has data issue: false hasContentIssue false

Arbitrary-amplitude rarefactive ion-acoustic double layers in warm multi-fluid plasmas

Published online by Cambridge University Press:  13 March 2009

S. Baboolal
Affiliation:
Department of Applied Mathematics, University of Durban-Westville, Private Bag X54001, Durban 4000, South Africa and Plasma Physics Research Institute, University of Natal
R. Bharuthram
Affiliation:
Department of Physics, University of Durban-Westville, Private Bag X54001, Durban 4000, South Africa and Plasma Physics Research Institute, University of Natal
M. A. Hellberg
Affiliation:
Plasma Physics Research Institute, University of Natal, King George V Avenue, Durban 4001, South Africa

Abstract

Large- and small-amplitude rarefactive ion-acoustic double layers have recently been studied in a fluid plasma with double Maxwellian electrons and a single cold ion species. Here the stationary large-amplitude theory is generalized to include two warm ion species. A technique for numerically solving the full nonlinear problem is presented. With it, useful predictions of the effect of ion temperatures and of light-ion contamination on the double-layer structure are made. A generalization to an arbitrary number of similar fluid components is pointed out. The small-amplitude perturbation theory is also extended to such a plasma, and in its restricted regime good qualitative agreement is obtained with the results of the large-amplitude theory.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ameniya, H. & Nakamura, Y. 1986 Plasma Phys. Contr. Fusion, 28, 1613.CrossRefGoogle Scholar
Bharuthram, R. & Shukla, P. K. 1986 Phys. Fluids, 29, 3214.CrossRefGoogle Scholar
Block, L. P. 1972 Cosmic Electrodyn. 3, 349.Google Scholar
Chen, F. 1974 Introduction to Plasma Physics. Plenum Press.Google Scholar
Coakley, P. & Hershkowitz, N. 1979 Phys. Fluids, 22, 1171.CrossRefGoogle Scholar
Goswami, K. S. & Bujarbarua, S. 1985 Phys. Lett. A 108, 149.CrossRefGoogle Scholar
Hudson, M. K., Lotko, W., Roth, I. & Witt, E. 1983 J. Geophys. Res. 88, 916.CrossRefGoogle Scholar
Kellogg, P. J., Monson, S. J. & Whalen, B. A. 1984 Geophys. Res. Lett. 11, 515.CrossRefGoogle Scholar
Levine, J. S. & Crawford, F. W. 1980 J. Plasma Phys. 23, 223.CrossRefGoogle Scholar
Lighthill, M. J. 1965 J. Inst. Maths Applics, 1, 269.CrossRefGoogle Scholar
Lysak, R., Lotko, W., Hudson, M. & Witt, E. 1982 Proceedings of Symposium on Plasma Double Layers (ed. P. Michelsen & J. Juul Rasmussen), Risø National Laboratory, Denmark, Report RISØ-R-472, p. 274.Google Scholar
Muller, D. E. 1956 Math. Tables and Aids to Comp. 10, 208.CrossRefGoogle Scholar
Nejoh, J. 1987 Phys. Lett. A 123, 245.CrossRefGoogle Scholar
Raadu, M. A. & Chanteur, G. 1986 Physica Scripta, 33, 240.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.), pp. 2391. Consultants Bureau.Google Scholar
Sato, T. & Okuda, H. 1980 Phys. Rev. Lett. 44, 740.CrossRefGoogle Scholar
Sato, T. & Okuda, H. 1981 J. Geophys. Res. 86, 3357.CrossRefGoogle Scholar
Singh, N., Thiemann, H. & Schunk, R. W. 1986 IEEE Trans. Plasma Sci. 14, 805.CrossRefGoogle Scholar
Smith, R. A. 1982 Physica Scripta, T2/1, 238.Google Scholar
Stoer, J. & Bulirsch, R. 1980 Introduction to Numerical Analysis. Springer.CrossRefGoogle Scholar
Sutradhar, S. & Bujarbarua, S. 1987 J. Phys. Soc. Jpn, 56, 139.CrossRefGoogle Scholar
Tajiri, M. & Nishihara, K. 1985 J. Phys. Soc. Jpn, 54, 572.CrossRefGoogle Scholar
Taniuti, T. & Nishihara, K. 1983 Nonlinear Waves, p. 100. Pitman.Google Scholar
Temerin, M., Cerny, K., Lotko, W. & Mozer, F. S. 1982 Phys. Rev. Lett. 48, 1175.CrossRefGoogle Scholar
Torven, S. 1981 Phys. Rev. Lett. 47, 1053.CrossRefGoogle Scholar
Torven, S. & Andersson, D. 1979 J. Phys. D12, 717.Google Scholar
Tran, M. Q. 1974 Plasma Phys. 16, 1167.CrossRefGoogle Scholar
Traub, J. F. 1964 Iterative Methods for the Solution of Equations, p. 120. Prentice-Hall.Google Scholar
Watanabe, S. 1984 J. Phys. Soc. Jpn, 53, 950.CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar