Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-02T21:53:50.988Z Has data issue: false hasContentIssue false

Alfvén waves in shear flows: Driven wave formalism

Published online by Cambridge University Press:  16 May 2013

EDISHER KH. KAGHASHVILI*
Affiliation:
Atmospheric and Environmental Research (AER), A Verisk Analytics Company, 131 Hartwell Avenue, Lexington, MA 02421, USA ([email protected])

Abstract

The driven wave formalism, as it was later applied to the solar coronal plasma processes, was first developed in our earlier work (Kaghashvili, E. Kh. 2007 Alfvén wave-driven compressional fluctuations in shear flows. Phys. Plasmas14, 44502) that presented the analytical solutions for the plasma density fluctuations. In the driven-wave formalism, we look for the short-term changes in the initial waveform due to the linear interaction of the initial natural mode of the system and the flow inhomogeneity. This formalism allows us to obtain the analytical solutions for the driven waves that are excited in the system. While a full set of driven wave solutions for magnetohydrodynamic variables in the cold plasma case were presented earlier (Kaghashvili, E. 2012c Driven wave-generated electric field in the solar corona. J. Geophys. Res. 117, A10103, doi:10.1029/2012JA018120), the purpose of this paper is to remove the cold-plasma restriction and to present the formal solutions for the initial linearly polarized Alfvén wave-driven fluctuations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alazraki, G. and Couturier, P. 1971 Solar wind acceleration caused by the gradient of Alfvén wave pressure. Astron. Astrophys. 13, 380.Google Scholar
Alfvén, H. 1942 Existance of electromagnetic-hydrodynamic waves. Nature 150, 405.CrossRefGoogle Scholar
Asamura, K., Chaston, C. C., Itoh, Y., Fujimoto, M., Sakanoi, T., Ebihara, Y., Yamazaki, A., Hirahara, M., Seki, K., Kasaba, Y. and Okada, M. 2009 Sheared flows and small-scale Alfvén wave generation in the auroral acceleration region. Geophys. Res. Lett. 36, L05105.CrossRefGoogle Scholar
Bakas, N. A. 2009 Mechanisms underlying transient growth of planar perturbations in unbounded compressible shear flow. J. Fluid Mech. 639, 479.CrossRefGoogle Scholar
Balbus, S. A. and Hawley, J. F. 1992 A powerful local shear instability in weakly magnetized disks. IV. Nonaxi-symmetric perturbations. Astrophys. J. 400, 610.CrossRefGoogle Scholar
Barnes, A. 1968 Collisionless heating of the solar-wind plasma. I. Theory of the heating of collisionless plasma by hydromagnetic waves. Astrophys. J. 154, 751.CrossRefGoogle Scholar
Belcher, J. W. and Davis, L. Jr. 1971 Large-amplitude Alfvén waves in the interplanetary medium 2. J. Geophys. Res. 76, 3534.CrossRefGoogle Scholar
Belcher, J. W., Davis, L. Jr. and Smith, E. J. 1969 Large-amplitude Alfvén waves in the interplanetary medium: mariner 5. J. Geophys. Res. 74, 2302.CrossRefGoogle Scholar
Bodo, G., Poedts, S., Rogava, A. and Rossi, P. 2001 Spatial aspect of wave transformations in astrophysical flows. Astron. Astrophys. 374, 337.CrossRefGoogle Scholar
Camporeale, E. 2012 Nonmodal linear theory for space plasmas. Space Sci. Rev. 172, 397.CrossRefGoogle Scholar
Camporeale, E., Passot, T. and Burgess, D. 2010 Implications of a non-modal linear theory for the marginal stability state and the dissipation of fluctuations in the solar wind. Astrophys. J. 715, 260.CrossRefGoogle Scholar
Chagelishvili, G. D., Chanishvili, R. G., Lominadze, J. G. and Tevzadze, A. G. 1997 Magnetohydrodynamic waves linear evolution in parallel shear flows: amplification and mutual transformations. Phys. Plasmas 4, 259.CrossRefGoogle Scholar
Chagelishvili, G. D., Rogava, A. D. and Tsiklauri, D. G. 1996 Effect of coupling and linear transformation of waves in shear flows. Phys. Rev. E 53, 6028.Google ScholarPubMed
Chaston, C. C., Bonnell, J. W., Peticolas, L. M., Carlson, C. W., McFadden, J. P. and Ergun, R. E. 2002 Driven Alfvén waves and electron acceleration: a FAST case study. Geophys. Res. Lett. 29, 30.CrossRefGoogle Scholar
Chaston, C. C., Carlson, C. W., McFadden, J. P., Ergun, R. E. and Strangeway, R. J. 2007 How important are dispersive Alfvén waves for auroral particle acceleration? Geophys. Res. Lett. 34, L07101.CrossRefGoogle Scholar
Coleman, P. J. Jr. 1966 Hydromagnetic waves in the interplanetary plasma. Phys. Rev. Lett. 17, 207.CrossRefGoogle Scholar
Coleman, P. J. Jr. 1967 Wave-like phenomena in the interplanetary plasma: mariner 2. Planet. Space Sci. 15, 953.CrossRefGoogle Scholar
Coleman, P. J. Jr., 1968 Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371.CrossRefGoogle Scholar
Coleman, P. J. Jr., Sonett, C. P., Judge, D. L. and Smith, E. J. 1960 Some preliminary results of the Pioneer V magnetometer experiment. J. Geophys. Res. 65, 1856.CrossRefGoogle Scholar
Cooper, W. A. 1988 Ballooning instabilities in tokamaks with sheared toroidal flows. Plasma Phys. Control. Fusion 30, 1805.CrossRefGoogle Scholar
Craik, A. D. D. and Criminale, W. O. 1986 Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier-Stokes equations. Proc. R. Soc. 406, 13.Google Scholar
De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T. D., Schrijver, C. J., Title, A. M., Shine, R. A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T. and Nagata, S. 2007 Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574.CrossRefGoogle ScholarPubMed
Falle, S. A. E. G. and Hartquist, T. W. 2002 Generation of density inhomogeneities by magnetohydrodynamic waves. MNRAS 329, 195.CrossRefGoogle Scholar
Gekelman, W., Vincena, S., Leneman, D. and Maggs, J. 1997 Laboratory experiments on shear Alfvén waves and their relationship to space plasmas. J. Geophys. Res. 102, 7225.CrossRefGoogle Scholar
Génot, V., Louarn, P. and Le Quéau, D. 1999 A study of the propagation of Alfvén waves in the auroral density cavities. J. Geophys. Res. 104, 22649.CrossRefGoogle Scholar
Génot, V., Louarn, P. and Mottez, F. 2004 Alfvén wave interaction with inhomogeneous plasmas: acceleration and energy cascade towards small scales. Ann. Geophys. 22, 2081.CrossRefGoogle Scholar
Gogoberidze, G., Chagelishvili, G. D., Sagdeev, R. Z. and Lominadze, D. G. 2004 Linear coupling and overreflection phenomena of magnetohydrodynamic waves in smooth shear flows. Phys. Plasmas 11, 4672.CrossRefGoogle Scholar
Gogoberidze, G., Rogava, A. and Poedts, S. 2007 Quantifying shear-induced wave transformations in the solar wind. Astrophys. J. 664, 549.CrossRefGoogle Scholar
Goldreich, P. and Lynden-Bell, D. 1965 II. Spiral arms as sheared gravitational instabilities. MNRAS 130, 125.CrossRefGoogle Scholar
Gupta, G. R., Banerjee, D., Teriaca, L., Imada, S. and Solanki, S. 2010 Accelerating waves in polar coronal holes as seen by EIS and SUMER. Astrophys. J. 718, 11.CrossRefGoogle Scholar
Hansteen, V. and Velli, M. 2012 Solar wind models from the chromosphere to 1 AU. Space Sci. Rev. 172, 89.CrossRefGoogle Scholar
Heyvaerts, J. and Priest, E. R. 1983 Coronal heating by phase-mixed shear Alfven waves. Astron. Astrophy. 117, 220.Google Scholar
Hollweg, J. V. 1973a Alfvén waves in the solar wind: wave pressure, Poynting flux, and angular momentum. J. Geophys. Res. 78, 3643.CrossRefGoogle Scholar
Hollweg, J. V. 1973b Alfvén waves in a two-fluid model of the solar wind. Astrophys. J. 181, 547.CrossRefGoogle Scholar
Hollweg, J. V. 1974 Hydromagnetic waves in interplanetary space. Publ. Astron. Soc. Pacific 86, 561.CrossRefGoogle Scholar
Hollweg, J. V. 1978 Fast wave evanescence in the solar corona. Geophys. Res. Lett. 5, 731.CrossRefGoogle Scholar
Hollweg, J. V. and Kaghashvili, E. Kh. 2012 Alfvén waves in shear flows revisited. Astrophys. J. 744, 114.CrossRefGoogle Scholar
Hollweg, J. V., Kaghashvili, E. Kh. and Chandran, B. D. 2013, Velocity-shear-induced mode coupling in the solar atmosphere and solar wind: implications for plasma heating and MHD turbulence. Astrophys. J. in press.CrossRefGoogle Scholar
Hollweg, J. V. and Lilliequist, C. G. 1978 Geometrical MHD wave coupling. J. Geophys. Res. 83, 2030.CrossRefGoogle Scholar
Hung, R. J. and Barnes, A. 1973 Dissipation of hydromagnetic waves with application of the outer solar corona. II. Transition from collisional to collisionless electrons. Astrophys. J. 180, 271.CrossRefGoogle Scholar
Jacques, S. A. 1978 Solar wind models with Alfvén waves. Astrophys. J. 226, 632.CrossRefGoogle Scholar
Jephcott, D. F. 1959 Alfvén waves in a gas discharge. Nature 183, 1652.CrossRefGoogle Scholar
Jess, D. B., Mathioudakis, M., Erdélyi, R., Crockett, P. J., Keenan, F. P. and Christian, D. J. 2009 Alfvén waves in the lower solar atmosphere. Science 323, 1582.CrossRefGoogle ScholarPubMed
Kaghashvili, E. Kh. 1999a On the acceleration of the solar wind: role of the inhomogeneous flow. Astrophys. J. 512, 969.CrossRefGoogle Scholar
Kaghashvili, E. Kh. 1999b Ion-cyclotron wave dissipation channel for Alfvén waves. Geophys. Res. Lett. 26, 1817.CrossRefGoogle Scholar
Kaghashvili, E. Kh. 2002 Mode conversation and wave-particle interaction processes in the solar wind. PhD thesis, University of New Hampshire, Durham NH.Google Scholar
Kaghashvili, E. Kh. 2007 Alfvén wave driven compressional fluctuations in shear flows. Phys. Plasmas 14, 44502.CrossRefGoogle Scholar
Kaghashvili, E. Kh. 2012a Alfvén wave dynamics in the expanding solar corona. In: Magnetic Fields from the Photosphere to the Corona (eds. Rimmele, T. R. et al.). ASP Conference Series 463. San Francisco, CA: Astronomical Society of the Pacific, 175 pp.Google Scholar
Kaghashvili, E. Kh. 2012b Beyond standard coronal seismology tools. In: Magnetic Fields from the Photosphere to the Corona (eds. Rimmele, T. R.et al.) ASP Conference Series 463. San Francisco, CA: Astronomical Society of the Pacific, 235 pp.Google Scholar
Kaghashvili, E. 2012c Driven wave generated electric field in the solar corona. J. Geophys. Res. 117, A10103, doi:10.1029/2012JA018120.CrossRefGoogle Scholar
Kaghashvili, E. Kh., Quinn, R. A. and Hollweg, J. V. 2009 Driven waves as a diagnostics tool in the solar corona. Astrophys. J. 703, 1318.CrossRefGoogle Scholar
Kaghashvili, E. Kh., Raeder, J., Webb, G. M. and Zank, G. P. 2006 Propagation of Alfvén waves in shear flows: nature of driven longitudinal velocity and density fluctuations. Phys. Plasmas 13, 112107.CrossRefGoogle Scholar
Kletzing, C. A. 1994 Electron acceleration by kinetic Alfvén waves. J. Geophys. Res. 99, 11095.CrossRefGoogle Scholar
Koppel, D. 1965 Hydromagnetic waves in a shear flow. Phys. Fluids 8, 1467.CrossRefGoogle Scholar
Li, J. W., Chen, Y. and Li, Z. Y. 2006 On the self-heating phenomenon in nonmodal shear flow. Phys. Plasmas 13, 042101.CrossRefGoogle Scholar
Lundquist, S. 1949 Experimental demonstration of magneto-hydrodynamic waves. Nature 164, 145.CrossRefGoogle Scholar
Lysak, R. L. and Song, Y. 2006 Magnetosphere ionosphere coupling by Alfvén waves: beyond current continuity. Adv. Space Res. 38, 1713.CrossRefGoogle Scholar
Lysak, R. L. and Song, Y. 2008 Propagation of kinetic Alfvén waves in the ionospheric Alfvén resonator in the presence of density cavities. Geophys. Res. Lett. 35, 20101.CrossRefGoogle Scholar
Mahajan, S. M. and Rogava, A. D. 1999 What can the kinematic complexity of astrophysical shear flows lead to? Astrophys. J. 518, 814.CrossRefGoogle Scholar
Markovskii, S. A., Vasquez, B. J. and Hollweg, J. V. 2009 Proton heating by nonlinear field-aligned Alfvén waves in solar coronal holes. Astrophys. J. 695, 1413.CrossRefGoogle Scholar
McClements, K. G. and Fletcher, L. 2009 Inertial Alfvén wave acceleration of solar flare electrons. Astrophys. J. 693, 1494.CrossRefGoogle Scholar
McIntosh, S. W., de Pontieu, B., Carlsson, M., Hansteen, V., Boerner, P. and Goossens, M. 2011 Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475, 477.CrossRefGoogle ScholarPubMed
McIntosh, S. W., Innes, D. E., de Pontieu, B. and Leamon, R. J. 2010 STEREO observations of quasi-periodically driven high velocity outflows in polar plumes. Astron. Astrophy. 510, L2.CrossRefGoogle Scholar
Melrose, D. B. 1977a Mode coupling in the solar corona. III Alfven and magnetoacoustic waves. Aust. J. Phys. 30, 495.CrossRefGoogle Scholar
Melrose, D. B. 1977b Mode coupling in the solar corona. V. Reduction of the coupled equations. Aust. J. Phys. 30, 661.CrossRefGoogle Scholar
Ofman, L. and Wang, T. J. 2008 Hinode observations of transverse waves with flows in coronal loops. Astron. Astrophy. 482, L9.CrossRefGoogle Scholar
Parker, E. N. 1955 Hydromagnetic waves and the acceleration of cosmic rays. Phys. Review 99, 241.CrossRefGoogle Scholar
Poedts, S., Rogava, A. and Mahajan, S. M. 1998 Shear-flow-induced wave couplings in the solar wind. Astrophys. J. 505, 369.CrossRefGoogle Scholar
Porter, L. J., Klimchuk, J. A. and Sturrock, P. A. 1994 The possible role of MHD waves in heating the solar corona. Astrophys. J. 435, 482.CrossRefGoogle Scholar
Roberts, D. A. and Ghosh, S. 1999 A kinematic analysis of the role of velocity shear in expanding plasmas. J. Geophys. Res. 104, 22395.CrossRefGoogle Scholar
Rogava, A. D., Poedts, S. and Mahajan, S. M. 2000 Shear-driven wave oscillations in astrophysical flux tubes. Astron. Astrophys. 354, 749.Google Scholar
Shergelashvili, B. M., Poedts, S. and Pataraya, A. D. 2006 Nonmodal cascade in the compressible solar atmosphere: self-heating, an alternative way to enhance wave heating. Astrophys. J. 642, L73.CrossRefGoogle Scholar
Tomczyk, S. and McIntosh, S. W. 2009 Time-distance seismology of the solar corona with CoMP. Astrophys. J. 697, 1384.CrossRefGoogle Scholar
Tomczyk, S., McIntosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley, D. H. and Edmondson, J. 2010 Alfvén waves in the solar corona. Science 317, 1192.CrossRefGoogle Scholar
Unti, T. W. J. and Neugebauer, M. 1968 Alfvén waves in the solar wind. Phys. Fluids 11, 563.CrossRefGoogle Scholar
Usmanov, A. V., Matthaeus, W. H., Breech, B. A. and Goldstein, M. L. 2011 Solar wind modeling with turbulence transport and heating. Astrophys. J. 727, 84.CrossRefGoogle Scholar
Wang, X., He, J., Tu, C.-Y., Marsch, E., Zhang, L. and Chao, J.-K. 2012 Large-amplitude Alfvén wave in the interplanetary space: the WIND spacecraft observations. Astrophys. J. 746, 147.CrossRefGoogle Scholar
Webb, G. M., Kaghashvili, E. Kh. and Zank, G. 2007 Magnetohydrodynamic wave mixing in shear flows: Hamiltonian equations and wave action. J. Plasma Phys. 73, 15.CrossRefGoogle Scholar
Webb, G. M., Zank, G. P., Kaghashvili, E. Kh. and Ratkiewicz, R. E. 2005a Magnetohydrodynamic waves in non-uniform flows I: a variational approach. J. Plasma Phys. 71, 785.CrossRefGoogle Scholar
Webb, G. M., Zank, G. P., Kaghashvili, E. Kh. and Ratkiewicz, R. E. 2005b Magnetohydrodynamic waves in non-uniform flows II: stress-energy tensors, conservation laws and Lie symmetries. J. Plasma Phys. 71, 811.CrossRefGoogle Scholar
Wentzel, D. G. 1989 Magnetohydrodynamic wave conversion and solar-wind acceleration in coronal holes. Astrophys. J. 336, 1073.CrossRefGoogle Scholar
Winebarger, A. R., Warren, H., van Ballegooijen, A., DeLuca, E. E. and Golub, L. 2002 Steady flows detected in extreme ultraviolet loops. Astrophys. J. 567, L89.CrossRefGoogle Scholar
Wu, C. S., Yoon, P. H. and Chao, J. K. 1997 Motion of ions influenced by enhanced Alfvén waves. Phys. Plasmas 4, 856.CrossRefGoogle Scholar