Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:29:27.275Z Has data issue: false hasContentIssue false

Sideband growth in nonlinear Landau wave-particle interaction

Published online by Cambridge University Press:  13 March 2009

A. L. Brinca
Affiliation:
Institute for Plasma Research, Stanford University

Abstract

The distortion of the electron velocity distribution caused by a large amplitude Landau wave is determined analytically for the initial-value problem. The resulting stability of electrostatic perturbations impressed on the evolving plasma is studied. Narrow sidebands of the applied frequency experience consecutive growths of large magnitude during the early stages of the nonlinear wave-particle interaction. The significance of the derived results to both wave propagation experiments and triggered VLF emissions in the magnetosphere is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al'tshul, L. M. & Karpman, V. I. 1966 J.E.T.P., 22, 361.Google Scholar
Bernstein, I. B.Green, J. M. & Kruskal, M. O. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Bud'ko, N. I., Karpman, V. I. & Shklyar, D. R. 1971 Zh. ETF, 61, 1463.Google Scholar
Clemmow, P. C. & Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas. Addison-Wesley.Google Scholar
Dawson, J. M. 1961 Phys. Fluids, 4, 869.CrossRefGoogle Scholar
Denavit, J. & Kruer, W. L. 1971 Phys. Fluids, 14, 1782.CrossRefGoogle Scholar
Dysthe, K. B. 1971 J. Geophys. Res. 76, 6915.CrossRefGoogle Scholar
Eldridge, O. 1970 Phys. Fluids, 13, 738.CrossRefGoogle Scholar
Erdélyi, A. (ed.) 1953 Higher Transcendental Functions, vol. 2, p. 321. McGraw-Hill.Google Scholar
Goldman, M. V. 1970 Phys. Fluids, 13, 1281.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1965 Tables of Integrals, Series and Products. Academic.Google Scholar
Helliwell, R. A. 1965 Whistlers and Related Ionospheric Phenomena. Stanford University Press.Google Scholar
Kruer, W. L.Dawson, J. M. & Sudan, R. N. 1969 Phys. Rev. Lett. 23, 838.CrossRefGoogle Scholar
Kruer, W. L. & Dawson, J. M. 1970 Phys. Fluids, 13, 2747.CrossRefGoogle Scholar
Lee, A. & Schmidt, G. 1970 Phys. Fluids, 13, 2546.CrossRefGoogle Scholar
Malmberg, J. H. & Wharton, C. B. 1966 Phys. Rev. Lett. 17, 175.CrossRefGoogle Scholar
Malmberg, J. H. & Wharton, C. B. 1967 Phys. Rev. Lett. 19, 775.CrossRefGoogle Scholar
Manheimer, W. M. 1971 Phys. Rev. A 3, 1402.CrossRefGoogle Scholar
Mima, K. & Nishikawa, K. 1971 J. Phys. Soc. Japan, 30, 1722.CrossRefGoogle Scholar
Nunn, D. 1971 J. Plasma Phys. 5, 199.CrossRefGoogle Scholar
O'neil, T. M. 1965 Phys. Fluids, 8, 2255.CrossRefGoogle Scholar
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory, p. 39. New York: Benjamin.Google Scholar
Shapiro, V. D. & Schevchenko, V. I. 1970 JETP, 30, 1121.Google Scholar
Sitenko, A. G. 1967 Electromagnetic Fluctuations in Plasma. Academic.CrossRefGoogle Scholar
Walter, F. & Angerami, J. 1969 J. Geophys. Res. 74, 6352.CrossRefGoogle Scholar
Wharton, C. B., Malmberg, J. H. & O'neil, T. M. 1968 Phys. Fluids, 11, 1761.CrossRefGoogle Scholar
Yagishita, T. & Ichikawa, Y. H. 1970 J. Phys. Soc. Japan, 28, 1559.CrossRefGoogle Scholar