Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T06:22:38.700Z Has data issue: false hasContentIssue false

The respone of a spherical plasma probe to alternating potentials: Results of computations and use for plasma diagnostics

Published online by Cambridge University Press:  13 March 2009

R. Buckley
Affiliation:
Radio and Space Research Station. Ditton Park, Slought, England

Abstract

In a previous paper, the R.F. characteristics of a spherical probe immersed in a hot, low-density plasma using a realistic sheath model were considered, and a few results of computations presented. The remainder of these results are given in this paper. The dependences of R.F. admittance, and rectified current on probe radius, d.c. bias, and electron neutral collision frequency are exhibited and shown to be qualitatively in accord with the predictions of simple slab-sheath/dielectric models. It is shown how in principle, analysis of resonance rectification characteristics using curves included in the paper can yield values of electron density ne temperature Te, and electron-neutral collision frequency ν. Two methods of reduction are applied to some laboratory results obtained at Slough and are shown to give reasonably consistent values of ne and ν, but the values of Te, show considerable scatter. These methods could complement the Langmuir probe which gives more reliable values of Te than of ne in low density plasmas with ne ≾108 cm−3. Effects of magnetic fields are not included in this paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. E., Boyd, R. L. F. & Reynolds, P. 1957 Proc. Phys. Soc. B 70, 297.CrossRefGoogle Scholar
Bain, W. C. & Davies, P. G. 1965 Plan. Space Sci. 13, 969.CrossRefGoogle Scholar
Bernstein, I. B. & Rabinowitz, I. N. 1959 Phys. Fluid 2, 112.CrossRefGoogle Scholar
Boyd, R. L. F. & Twiddy, N. D. 1959 Proc. Roy. Soc. A. 250, 53.Google Scholar
Branner, G. R., Friar, E. W. & Medicus, G. 1963 Rev. Sci. Instrum. 34, 231.Google Scholar
Buckley, R., 1966 Proc. Roy. Soc. A 290, 186.Google Scholar
Crawford, F. W. & Mlondosky, R. F. 1964 J. Geophys. Res. 69, 2765.Google Scholar
Davies, P. G. 1966 Proc. Phys. Soc. 88, 1019.CrossRefGoogle Scholar
Druyvestyn, M. J. 1930 Phys. Z. 64, 793.Google Scholar
Harp, R. S. 1964 Appl. Phys. Lett. 4, 1861.CrossRefGoogle Scholar
Harp, R. S. & Crawford, F. W. 1964 J. Appl. Phys. 35, 343.CrossRefGoogle Scholar
Harp, R. S. & Crawford, F. W. 1965 J. Geophys. Res. 70, 587.Google Scholar
Ichikawa, Y. H. & Ikegami, H. 1962 Prog. Theor. Phys. Japan 28, 315.CrossRefGoogle Scholar
Mayer, H. M. 1963 Proc. VIth Int. Conf. on Ionization Phenomena in Gases, Paris 4, 129.Google Scholar
Miyazaki, S., Hirao, K., Aono, J., Tikayama, K., Ikegami, H. & Icheyama, T. 1960 Rept. Ionosph. Sp. Res. Japan 14, 148.Google Scholar
Sloane, H. R. & MacGregor, E. I. R. 1934 Phil. Mag. 18, 193.Google Scholar
Taillet, J. 1965 J. Physique T 26, 437.Google Scholar
Wimmel, H. K. 1964 Z. Naturf. 19A, 1099.CrossRefGoogle Scholar