Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T05:11:42.735Z Has data issue: false hasContentIssue false

On the formation of periodic and solitary whistler envelopes

Published online by Cambridge University Press:  13 March 2009

G. Mann
Affiliation:
Zentralinstitut für Astrophysik der Akademie der Wissenschaften der DDR, Observatorium für solare Radioastronomie, DDR-1501 Tremsdorf

Abstract

The nonlinear interaction of whistler waves with the background plasma via the ponderomotive force gives rise to the formation of both periodic and solitary whistler envelopes. This is described in terms of the Lagrange formalism which allows us to define conserved quantities which determine, together with the parameters of the background plasma and the whistler frequency, the particular form of the envelope.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chian, A. C.-L. & Kennel, C. F. 1983 Astrophys. Space Sci. 97, 9.CrossRefGoogle Scholar
Helliwell, R. A. 1965 Whistlers and Related Ionospheric Phenomena. Stanford University Press.Google Scholar
Helliwell, R. A. 1983 Radio Sci. 18, 801.CrossRefGoogle Scholar
Karpman, V. I. 1977 Nichtlineare Wellen. Akademie.CrossRefGoogle Scholar
Karpman, V. I. & Kaufman, R. N. 1982 J. Plasma Phys. 27, 225.CrossRefGoogle Scholar
Karpman, V. I. & Krushkal, E. M. 1968 Zh. Eksp. Teor. Fiz. 55, 530.Google Scholar
Karpman, V. I. & Washimi, H. 1977 J. Plasma Phys. 18, 173.CrossRefGoogle Scholar
Korn, G. A. & Korn, T. M. 1961 Mathematical Handbook for Scientists and Engineers. McGraw-Hill.Google Scholar
Kuijpers, J. 1975 Solar Phys. 44, 173.CrossRefGoogle Scholar
Landau, L. D. & Lifschitz, E. M. 1973 Lehrbuch der Theoretischen Physik Bd. II, Klassische Feldtheorie. Akademie.Google Scholar
Magnus, W. & Oberhettinger, F. 1948 Formeln und Sätze für die speziellen Funktionen der mathematischen Physik. Springer.CrossRefGoogle Scholar
Mann, G. 1985 J. Plasma Phys. 33, 21.CrossRefGoogle Scholar
Matsumoto, H. 1979 Wave Instabilities in Space Plasmas (ed. Palmadesso, P. J. and Papadopoulos, K.). Reidel.Google Scholar
Newkirk, G. A. 1961 Astrophys. J. 133, 983.CrossRefGoogle Scholar
Oberhettinger, F. & Magnus, W. 1949 Anwendungen der elliptischen Funktionen in Physik und Technik. Springer.CrossRefGoogle Scholar
Schmutzer, E. 1973 Grundprinzipien der klassischen Mechanik und der klassischen Feldtheorie. VEB Deutscher Verlag der Wissenschaften.Google Scholar
Slottje, C. 1981 Atlas of fine structures of dynamic spectra of solar type IV -dm and some type II radio bursts. Utrecht.Google Scholar
Spatschek, K. H., Shukla, P. K., Yu, M. Y. & Karpman, V. I. 1979 Phys. Fluids, 22, 576.CrossRefGoogle Scholar
Stenzel, R. L. 1976 Phys. Fluids, 19, 857.CrossRefGoogle Scholar
Washimi, H. 1973 J. Phys. Soc. Japan, 34, 1373.CrossRefGoogle Scholar
Washimi, H. & Karpman, V. I. 1976 Zh. Eksp. Teor. Fiz. 71, 1010.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar