Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T23:21:55.711Z Has data issue: false hasContentIssue false

Obliquely propagating ion-acoustic solitons in a multi-component magnetized plasma with negative ions

Published online by Cambridge University Press:  13 March 2009

M. K. Mishra
Affiliation:
Department of Physics, University of Rajasthan, Jaipur 302004, India
R. S. Chhabra
Affiliation:
Department of Physics, University of Rajasthan, Jaipur 302004, India
S. R. Sharma
Affiliation:
Department of Physics, University of Rajasthan, Jaipur 302004, India

Extract

Oblique propagation of ion-acoustic solitons in a magnetized low-β plasma consisting of warm positive and negative ion species along with hot electrons is studied. Using the reductive perturbation method, a KdV equation is derived for the system, which admits an obliquely propagating soliton solution. It is found that if the ions have finite temperatures then there exist two types of modes, namely slow and fast ion-acoustic modes. The parameter determining the nature of soliton (i.e. whether the system will support compressive or rarefactive solitons) is different for slow and fast modes. For the slow mode the parameter is the relative temperature of the two ion species, whereas for the fast mode it is the relative concentraion of the two ion species. For the fast mode it is found that there is a critical value of the negative-ion concentration below which only compressive solitons exist and above which rarefactive solitons exist. To discuss the soliton solution at the critical concentration, a modified KdV equation is derived. It is found that at the critical concentration of negative ions compressive and rarefactive solitons co-exist. The effects of temperature of different ion species, angle of obliqueness and magnetization on the characteristics of the solitons are discussed in detail.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buti, B. 1980 Phys. Lett. 76 A, 251.CrossRefGoogle Scholar
Cooney, J. L., Gavin, M. T. & Lonngren, K. E. 1991 Phys. Fluids B 3, 2758.CrossRefGoogle Scholar
Das, G. C. & Tagare, S. G. 1975 Plasma Phys. 17, 1025.CrossRefGoogle Scholar
Das, K. P. & Verheest, F. 1989 J. Plasma Phys. 41, 139.CrossRefGoogle Scholar
Doucet, H. J. 1970 Phys. Lett. 33 A, 283.CrossRefGoogle Scholar
Ichikawa, Y. H. & Watanabe, S. 1977 J. Phys (Paris) 15 (C6), 38.Google Scholar
Ikezi, H. 1978 Solitons in Action (ed. Lonngren, K. E. & Scott, A.), p. 153. Academic.Google Scholar
Lee, L. C. & Kan, J. R. 1981 Phys. Fluids 24, 430.CrossRefGoogle Scholar
Lonngren, K. E. 1983 Plasma Phys. 25, 943.CrossRefGoogle Scholar
Ludwig, G. O., Ferreira, J. L. & Nakamura, Y. 1984 Phys. Rev. Lett. 52, 275.CrossRefGoogle Scholar
Kalita, B. C. & Devi, N. 1993 Phys. Fluids B5, 440.CrossRefGoogle Scholar
Nakamura, Y. 1982 IEEE Trans. Plasma Sci. 10, 180.CrossRefGoogle Scholar
Nakamura, Y. 1985 Nonlinear and Environmental Electromagnetics (ed. Kikuchi, H.). Elsevier.Google Scholar
Nakamura, Y. & Tsukabayashi, I. 1984 Phys. Rev. Lett. 52, 2356.CrossRefGoogle Scholar
Nakamura, Y. & Tsukabayashi, I. 1985 J. Plasma Phys. 34, 401.CrossRefGoogle Scholar
Nishihara, K. & Tajiri, M. 1981 J. Phys. Soc. Japan 50, 4047.CrossRefGoogle Scholar
Ray, D. 1979 Phys. Fluids 22, 2037.CrossRefGoogle Scholar
Rizzato, F. B., Schneider, R. S. & Dillenburg, D. 1987 Plasma Phys. Contr. Fusion 29, 1127.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Review of Plasma Physics, vol. 3, p. 23. Consultants Bureau.Google Scholar
Shukla, P. K. & Yu, M. Y. 1978 J. Math. Phys. 19, 2506.CrossRefGoogle Scholar
Tagare, S. G. 1986 J. Plasma Phys. 36, 301.CrossRefGoogle Scholar
Tagare, S. G. & Reddy, R. V. 1987 Plasma Phys. Contr. Fusion 29, 671.CrossRefGoogle Scholar
Tran, M. Q. 1974 Plasma Phys. 16, 1167.CrossRefGoogle Scholar
Tran, M. Q. 1979 Physica Scripta 20, 317.CrossRefGoogle Scholar
Verheest, F. 1988 J. Plasma Phys. 39, 71.CrossRefGoogle Scholar
Watanabe, S. 1984 J. Phys. Soc. Japan 53, 950.CrossRefGoogle Scholar
Williams, J. E., Cooney, J. L., Aossey, D. W. & Lonngren, K. E. 1992 Phys. Rev. A 45, 5897.CrossRefGoogle Scholar
Witt, E. & Lotko, W. 1983 Phys. Fluids 18, 1489.Google Scholar
Wong, A. Y., Mamas, D. L. & Arnush, D. 1975 Phys. Fluids 18, 1489.CrossRefGoogle Scholar
Yadav, L. L. & Sharma, S. R. 1990 Phys. Lett. 150 A, 397.CrossRefGoogle Scholar
Yashvir, X., Bhatnagar, T. N. & Sharma, S. R. 1984 Plasma Phys. Contr. Fusion 26, 1303.CrossRefGoogle Scholar