Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T19:00:22.541Z Has data issue: false hasContentIssue false

Nonlinear interaction of electron acoustic waves with Langmuir waves in presence of magnetic field in plasmas

Published online by Cambridge University Press:  21 July 2014

Manjistha Dutta*
Affiliation:
Department of Instrumentation Science, Jadavpur University, Kolkata 700 032, India
Manoranjan Khan
Affiliation:
Department of Instrumentation Science, Jadavpur University, Kolkata 700 032, India
Nikhil Chakrabarti
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064, India
*
Email address for correspondence: [email protected]

Abstract

Nonlinear interaction between Langmuir waves and Electron Acoustic Wave (EAW) is being studied in a warm magnetized plasma in presence of two intermingled fluids, hot electrons, and cold electrons while ions forming static background. Two-fluid, two-timescale theory is performed to derive modified Zakharov's equations in a magnetized plasma. These coupled equations describe low-frequency response of electron density due to high-frequency electric field along with magnetic field perturbations. Linear analysis shows coupling between acoustic mode, upper hybrid mode, and cyclotron modes. These modes are found to be modified due to the presence of two electron components. These equations are significant in the context of weak and strong turbulence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliev, Yu. M., Frolov, A. A., Stenflo, L. and Shukla, P. K. 1990 Phys. Fluids. B 2, 34.Google Scholar
Anderegg, F., Driscoll, C. F., Dubin, D. H. E., ONeil, T. M. and Valentini, F. 1 2009 Phys. Plasmas 16, 55705.Google Scholar
Anderson, R. R., Harvey, C. C., Hoppe, M. M., Tsurutani, B. T., Eastman, T. E and Etcheto, J. 1982 J. Geophys. Res. 87, 2087.Google Scholar
Berthomier, M., Pottelette, R., Malingre, M. and Khotyaintsev, Y. 2000 Phys. Plasmas 7, 2987.Google Scholar
Chakrabarti, N., Mylavarapu, J. S., Dutta, M. and Khan, M. 2011 Phys. Rev. E 83, 016404.Google Scholar
Chakrabarti, N. and Sengupta, S. 2009 Phys. Plasmas 16, 072311.Google Scholar
Dutta, M., Chakrabarti, N., Roychoudhury, R. and Khan, M. 2011 Phys. Plasmas 18, 102301.Google Scholar
Dutta, M., Ghosh, S., Roychoudhury, R., Khan, M. and Chakrabarti, N. 2013 a Phys. Plasmas 20, 042301.Google Scholar
Dutta, M., Ghosh, S., Roychoudhury, R., Khan, M. and Chakrabarti, N. 2013 b Phys. Plasmas 20, 012113.Google Scholar
Dysthe, K. B., Mjølhus, E., Pécseli, H. L. and Stenflo, L. 1984 Plasma Phys. Control. Fusion 26, 443.Google Scholar
Dysthe, K. B., Mjølhus, E., Pécseli, H. L. and Stenflo, L. 1985 Plasma Phys. Control. Fusion 27, 501.Google Scholar
Fredricks, R. W., Kennel, C. F., Scarf, F. L., Crook, G. M. and Green, I. M. 1968 Phys. Rev. Lett. 21, 1761.Google Scholar
Gary, S. P. and Tokar, R. L. 1985 Phys. Fluids 28 (8), 2439.Google Scholar
Giles, M. J. 1981 Phys. Rev. Lett. 47, 1606.Google Scholar
Gurnett, D. A. and Frank, L. A. 1977 J. Geophys. Res. 82, 1031.Google Scholar
Gurnett, D. A. and Frank, L. A. 1978 J. Geophys. Res. 83, 1447.Google Scholar
Gurnett, D. A., Frank, L. A. and Lepping, R. P. 1976 J. Geophys. Res. 81, 6059.Google Scholar
Haar, D. Ter 1982 Phys. Scr. T2B, 522.Google Scholar
Hanssen, A., Pécseli, H. L., Stenflo, L. and Trulsen, J. 1994 J. Plasma. Phys. 51, 423.Google Scholar
Heuraux, S. and Leclert, G. 1994 Plasma Phys. Control. Fusion 36, 991.Google Scholar
Infeld, E. and Rowland, G. 1989 Phys. Rev. Lett. 62, 2269.Google Scholar
Kabantsev, A. A., Valentini, F. and Driscoll, C. F. 2006 AIP Conf. Proc. 862, 13.Google Scholar
Kaufman, A. N. and Stenflo, L. 1975 Phys. Scr. 11, 269.Google Scholar
Kelley, M. C. and Earle, G. D. 1988 J. Geophys. Res. 93, 1993.Google Scholar
Kono, M., Skoric, M. M. and Haar, D. Ter 1980 Phys. Lett. 78A, 140.Google Scholar
Kourakis, I. and Shukla, P. K. 2004 Phys. Rev. E 69, 036411.Google Scholar
Montgomery, D., Focia, R. J., Rose, H. A., Russell, D. A., Cobble, J. A., Fernndez, J. C. and Johnson, R. P. 2001 Phys. Rev. Lett. 87, 155001.Google Scholar
Nicolic, L., Koric, M. M., Ishiguro, S. and Sato, T. 2002 Phys. Rev. E 66, 036404.Google Scholar
Ovenden, C. R., Statham, G. and Haar, D. Ter 1983 Plasma Phys. 25, 665.Google Scholar
Pécseli, H. L., Rasmussen, J. J. and Thomsen, K. 1983 Phys. Lett. 99A, 175.Google Scholar
Pottelette, R., Ergun, R. E., Treumann, R. A., Berthomier, M., Carlson, C. W., McFadden, J. P. and Roth, I. 1999 Geophys. Res. Lett. 26, 2629.Google Scholar
Pottelette, R. and Illiano, J. M. 1982 J. Geophys. Res. 87, 5151.Google Scholar
Pottelette, R., Treumann, R. A. and Berthomier, M. 2001 J. Geophys. Res. 106, 8465.Google Scholar
Pottelette, R., Treumann, R. A. and Dubouloz, N. 1992 J. Geophys. Res. 97, 12029.Google Scholar
Sagdeev, R. Z. 1979 Rev. Mod. Phys. 51, 1.Google Scholar
Singh, S. V. and Lakhina, G. S. 2001 Planet. Space Sc. 49, 107.Google Scholar
Sircombe, N. J., Arber, T. D. and Dendy, R. O. 2006 Plasma Phys. Control. Fusion 48, 1141.Google Scholar
Statham, G. and Haar, D. Ter 1983 Plasma Phys. 25, 681.Google Scholar
Stenflo, L. and Shukla, P. K. 1995 J. Geophys. Res. 100, 17261.Google Scholar
Tokar, R. L. and Gary, S. P. 1984 Geophys. Res. Lett. 11, 1180.Google Scholar
Watanabe, K. and Taniuti, T. 1977 J. Phys. Soc. Japan 43, 1819.Google Scholar
Yu, M. and Shukla, P. K. 1983 J. Plasma Phys. 29, 409.Google Scholar
Yu, M. Y. and Shukla, P. K. 1976 Plasma Phys. 19, 889.Google Scholar