Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T05:16:59.100Z Has data issue: false hasContentIssue false

Modified Korteweg—de Vries ion-acoustic solitons in a plasma

Published online by Cambridge University Press:  13 March 2009

Y. Nakamura
Affiliation:
Institute of Space and Astronautical Science, Komaba, Meguro-ku, Tokyo 153, Japan
I. Tsukabayashi
Affiliation:
Institute of Space and Astronautical Science, Komaba, Meguro-ku, Tokyo 153, Japan

Abstract

Propagation of nonlinear ion-acoustic waves in a multi-component plasma with negative ions is investigated experimentally. At a critical concentration of negative ions, both compressive and rarefactive solitons are observed. The velocities and widths of the solitons are measured and compared with the soliton solutions of the modified Korteweg–de Vries equation and of the pseudopotential method. The modified Korteweg–de Vries equation is solved numerically to investigate overtaking collisions of a positive and a negative soliton. Fluid equations together with Poisson's equation are numerically integrated to simulate their head-on collisions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Biskamp, D. & Perkinson, D. 1970 Phys. Fluids, 13, 2295.CrossRefGoogle Scholar
D'Angelo, N., Goeler, S. V. & Ohe, T. 1966 Phys. Fluids, 9, 1605.CrossRefGoogle Scholar
Das, G. C. 1979 Plasma Phys. 21, 257.Google Scholar
Das, G. C. & Tagare, S. G. 1975 Plasma Phys. 17, 1025.Google Scholar
Drazin, P. G. 1983 Solitons. Cambridge University Press.Google Scholar
Honzawa, T. 1984 Phys. Fluids, 27, 1013.CrossRefGoogle Scholar
Ichikawa, Y. H. & Watanabe, S. 1977 J. de Phys. C615, 38.Google Scholar
Ikezi, H. 1978 Solitons in Action (ed. Lonngren, K. E. and Scott, A., p. 153. Academic.Google Scholar
Kakutani, T. & Yamasaki, N. 1978 J. Phys. Soc. Japan, 45, 674.Google Scholar
Laedke, E. W. & Spatschek, K. H. 1984 Phys. Rev. Lett. 52, 279.CrossRefGoogle Scholar
Lonngren, K. E. 1983 Plasma Phys. 25, 943.Google Scholar
Ludwig, G. O., Ferreira, J. L. & Nakamura, Y. 1984 Phys. Rev. Lett. 52, 275.Google Scholar
Makhankov, V. G. 1978 Phys. Rep. 35, 1.Google Scholar
Nakamura, Y. 1982 IEEE Trans. Plasma Sci. PS-10, 180.Google Scholar
Nakamura, Y., Ferreira, J. L. & Ludwig, G. O. 1985 a J. Plasma Phys. 33, 237.Google Scholar
Nakamura, Y., Nomura, Y. & Itoh, T. 1977 Phys. Rev. Lett. 37, 209.Google Scholar
Nakamura, Y. & Tsukabayashi, I. 1984 Phys. Rev. Lett. 52, 2356.Google Scholar
Nakamura, Y., Tsukabayashi, I., Ludwig, G. O. & Ferreira, J. L. 1985 b Preprint.Google Scholar
Ogino, T. & Takeda, S. 1975 J. Phys. Soc. Japan, 39, 1365.Google Scholar
Okutsu, E. & Nakamura, Y. 1979 Plasma Phys. 21, 1053.Google Scholar
Sagdeev, R. Z. 1969 Reviews of Plasma Physics (ed. Le ontovich, M. A.), vol. 4, p. 65. Consultants Bureau.Google Scholar
Tran, M. Q. 1979 Physica Scripta, 20, 317.Google Scholar
Washimi, H. & Taniuchi, T. 1966 Phys. Rev. Lett. 17, 996.Google Scholar
Watanabe, S. 1978 J. Phys. Soc. Japan, 44, 611.Google Scholar
Watanabe, S. 1984 J. Phys. Soc. Japan, 53, 952.Google Scholar
Yajima, N., Oikawa, M. & Satsuma, J. 1978 J. Phys. Soc. Japan, 44, 1711.Google Scholar
Zabusky, N. J. & Kruskal, M. D. 1965 Phys. Rev. Lett. 15, 240.Google Scholar