Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-30T20:10:46.688Z Has data issue: false hasContentIssue false

Large amplitude ion-acoustic double layers in warm dusty plasma

Published online by Cambridge University Press:  28 August 2014

S. L. Jain
Affiliation:
Department of Physics, Poornima Group of Institutions, Sitapura, Jaipur-302022, Rajasthan, India
R. S. Tiwari
Affiliation:
Regional College for Education, Research and Technology, Jaipur-302022, Rajasthan, India
M. K. Mishra*
Affiliation:
Department of Physics, University of Rajasthan, Jaipur-302004, Rajasthan, India
*
Email address for correspondence: [email protected])

Abstract

Large amplitude ion-acoustic double layer (IADL) is studied using Sagdeev's pseudo-potential technique in collisionless unmagnetized plasma comprising hot and cold Maxwellian population of electrons, warm adiabatic ions, and dust grains. Variation of both Mach number (M) and amplitude |φm| of large amplitude IADL with charge, concentration, and mass of heavily charged massive dust grains is investigated for both positive and negative dust in plasma. Our numerical analysis shows that system supports only rarefactive large amplitude IADL for the selected set of plasma parameters. Our investigations for both negative and positive dust grains reveal that ion temperature increases the mobility of ions, resulting in increase in the Mach number of IADL. The larger mobility of ions causes leakage of ions from localized region, resulting into decrease in the amplitude of IADL. Other parameters, e.g. temperature ratio of hot to cold electrons, charge, concentration, mass of heavily charged massive dust grains also play significant role in the properties and existence of double layers. Since it is well established that both positive and negative dust are found in space as well as laboratory plasma, and double layers have a tremendous role to play in astrophysics, we have included both positive and negative dust in our numerical analysis for the study of large amplitude IADL. Further data used for negative dust are close to experimentally observed data. Hence, it is anticipated that our parametric studies for heavily charged (both positive and negative) dust may be useful in understanding laboratory plasma experiments, identifying nonlinear structures in upper part of ionosphere and lower part of magnetosphere structures, and in theoretical research for the study of properties of nonlinear structures.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alfven, H. 1958 Tellus 10, 104.Google Scholar
Alfven, H. and Carlqvist, P. 1987 Sol. Phys. 1, 220.CrossRefGoogle Scholar
Alinejad, H., Mamun, A. A. 2010 Phys. Plasmas 17, 123704.Google Scholar
Barkan, A. and Merlino, R. L. 1995 Phys. Plasmas 2 (9), 32613265.CrossRefGoogle Scholar
Bharuthram, R. and Shukla, P. K. 1986 Phys. Fluids 29, 10.Google Scholar
Bharuthram, R. and Shukla, P. K. 1992a Planet Space Sci. 40, 973.Google Scholar
Bharuthram, R. and Shukla, P. K. 1992b Planet Space Sci. 40, 647.Google Scholar
Bharuthram, R. and Shukla, P. K. 1992c Planet Space Sci. 40, 465.Google Scholar
Bouchule, A. 1999 Dusty Plasmas. New York, NY: Wiley.Google Scholar
Carlile, R. N., Geha, S., O'Hanlon, J. F. and Stewart, J. C. 1991 Electrostatic trapping of contamination particles in a process plasma environment. Appl. Phys. Lett. 59, 11671169.Google Scholar
Chow, V. W., Mendis, D. A. and Resenberg, M. 1993 J. Geophys. Res. 98, 19065.CrossRefGoogle Scholar
Das, B., Ghosh, D. and Chatterjee, P. 2010 Proc. Indian Acad. Sci. 74 (6), 973981.Google Scholar
Fortov, V. E., Nefedov, A. P., Vaulina, O. S., Lipaev, A. M., Molotkov, V. I., Samaryan, A. A., Nikitskii, V. P., Ivanov, A. I., Savin, S. F., Kalmykov, A. V. et al. 1998 J. Exp. Theor. Phys. 87, 1087.CrossRefGoogle Scholar
Geortz, C. K. 1989 Dusty plasmas in the solar system. Rev. Geophys. 27, 271292.CrossRefGoogle Scholar
Havens, O., Melandso, F., Hoz, C. L., Aslaksen, T. K. and Hartquist, T. 1992 Charged dust in the Earth's mesopause; effects on radar backscatter. Phys. Scr. 45, 535.Google Scholar
Havnes, O., Troim, J., Blix, T., Mortensen, W., Naesheim, L. I., Thrane, E. and Tonnesen, T. 1996 J. Geophys. Res. 101, 10839, doi:10.1029/96JA00003.CrossRefGoogle Scholar
Horanyi, H. 1996 Annu. Rev. Astron. Astrophys. 34, 383.Google Scholar
Horanyi, M. and Mendis, D. A. 1986 The dynamics of charged dust in the tail of comet Giacobini-Zinner. J. Geophys. Res. 91, 355361.CrossRefGoogle Scholar
Horányi, M., Morfill, G. E. and Grün, E. 1993 Nature (London) 363, 144.Google Scholar
Ivlev, A. and Morfill, G. 2001 Phys. Rev. E 63, 026412.Google Scholar
Jain, S. L., Tiwari, R. S. and Sharma, S. R. 1990 Can. J. Phys. 68, 474.CrossRefGoogle Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 702.Google Scholar
Mandal, G., Roy, K. and Chatterjee, P. 2009 Indian J. Phys. 83 (3), 365.Google Scholar
Mendis, D. A. and Resenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.CrossRefGoogle Scholar
Mishra, M. K., Tiwari, R. S. and Jain, S. K. 2007 Phys. Rev. E 76, 036401.Google Scholar
Mrif, H. and Djebli, M. 2007 34th EPS Conference on Plasma Physics, Warsaw, 2–6 July. ECA 31F, P-2.101.Google Scholar
Nakamura, Y. and Sarma, A. 2001 Phys. Plasmas 8, 3921.CrossRefGoogle Scholar
Raadu, M. A. 1989 Phys. Rep. 178, 25.Google Scholar
Rosenberg, M. and Mendis, D. A. 1995 IEEE Trans. Plasma Sci. 23, 177.Google Scholar
Rosenberg, M., Mendis, D. A. and Sheehan, D. P. 1999 IEEE Trans. Plasma Sci. 27, 239.Google Scholar
Sah, O. P. 2004 Eur. Phys. J. D 31, 91100.Google Scholar
Selwyn, G. S. 1993 Jpn. J. Appl. Phys. 32(part 1), 3068.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Shukla, P. K., Mendis, D. A. and Desai, T. 1997 Advances in Dusty Plasmas. Singapore: World Scientific.Google Scholar
Smith, M. A., Goodrich, J., Rehman, H. W. and Mohideen, U. 2001 IEEE Trans. Plasma Sci. 29, 216.Google Scholar
Tagare, S. G. 2000 Phys. Plasmas 7 (3), 883.Google Scholar
Thomas, H., Morfill, G. E. and Dammel, V. 1994 Phys. Rev. Lett. 73, 652.CrossRefGoogle Scholar
Verheest, F. 2000 Waves in Dusty Plasma. Dordrecht, Netherlamds: Kluwar.Google Scholar
Wang Zheng, X., Wang, X., Ren, Li-W., Liu, J.-Y. and Liu, Y. 2005 Phys. Plasmas 12, 082104.CrossRefGoogle Scholar