Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:19:05.402Z Has data issue: false hasContentIssue false

Effect of a weak ambipolar field on non-local heat transport using the non-diffusive approximation

Published online by Cambridge University Press:  13 March 2009

G. Murtaza
Affiliation:
Quaid-i-Azam University, Islamabad, Pakistan
Arshad M. Mirza
Affiliation:
Quaid-i-Azam University, Islamabad, Pakistan
M. S. Qaisar
Affiliation:
Quaid-i-Azam University, Islamabad, Pakistan

Abstract

We investigate the effect of a weak ambipolar field on non-local heat transport by solving the reduced Fokker-Planck equation in the non-diffusive approximation for the electron distribution function. It turns out that for a moderately high-Z plasma with steep gradients the maximum-heat-flow expression is modified and the ensuing results compare favourably with the experimental values. However, in the gentle-gradient limit the classical Spitzer-Härm heat flux expression is unaltered.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albritton, J. R., Williams, E. A., Bernstein, I. B. & Swartz, K. P. 1986 Phys. Rev. Lett. 57, 1887.CrossRefGoogle Scholar
Bell, A. R., Evans, R. G. & Nicholas, D. J. 1981 Phys. Rev. Lett. 46, 243.CrossRefGoogle Scholar
Bendib, A. R., Luciani, J. F. & Matte, J. P. 1988 Phys. Fluids, 31, 711.CrossRefGoogle Scholar
Gray, D. R. & Kilkenny, D. J. 1980 Plasma Phys. 22, 81.CrossRefGoogle Scholar
Kishimoto, Y., Mima, K. & Haines, M. G. 1988 J. Phys. Soc. Jpn, 57, 1972.CrossRefGoogle Scholar
Luciani, J. F., Mora, P. & Pellat, R. 1985 Phys. Fluids, 28, 835.CrossRefGoogle Scholar
Luciani, J. F., Mora, P. & Virmont, J. 1983 Phys. Rev. Lett. 51, 1664.CrossRefGoogle Scholar
Malone, R. C., McCrory, R. L. & Morse, R. L. 1975 Phys. Rev. Lett. 34, 721.CrossRefGoogle Scholar
Matte, J. P. & Virmont, J. 1982 Phys. Rev. Lett. 49, 1936.CrossRefGoogle Scholar
Max, C. E., McKee, C. E. & Mead, W. C. 1980 Phys. Fluids, 23, 1620.CrossRefGoogle Scholar
Mead, W. C. et al. 1984 Phys. Fluids, 27, 1301.CrossRefGoogle Scholar
Mirza, A. M. & Murtaza, G. 1989 Physica Scripta, 41, 262.CrossRefGoogle Scholar
Mirza, A. M., Murtaza, G. & Qaisar, M. S. 1989 Phys. Lett. A 141, 56.CrossRefGoogle Scholar
Murtaza, G., Mirza, A. M. & Qaisar, M. S. 1990 Physica Scripta 42, 347.CrossRefGoogle Scholar
Nuckolls, J. H., Wood, L., Thiessen, A. & Zimmerman, G. 1972 Nature, 239, 139.CrossRefGoogle Scholar
Spitzer, L. & Härm, R. 1953 Phys. Rev. 89, 977.CrossRefGoogle Scholar
Yaakobi, B. & Bristow, T. C. 1977 Phys. Rev. Lett. 38, 350.CrossRefGoogle Scholar
Young, F. C. et al. 1977 Appl. Phys. Lett. 30, 45.CrossRefGoogle Scholar