Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:37:52.621Z Has data issue: false hasContentIssue false

Diffusion processes in the field of a monochromatic wave propagating in an inhomogeneous magnetoplasma

Published online by Cambridge University Press:  13 March 2009

D. R. Shklyar
Affiliation:
Institute for Terrestrial Magnetism, Ionosphere and Radiowave Propagation, 142092, Troitzk, Moscow Region, U.S.S.R.
V. V. Solov'ev
Affiliation:
Institute for Terrestrial Magnetism, Ionosphere and Radiowave Propagation, 142092, Troitzk, Moscow Region, U.S.S.R.

Abstract

Particle diffusion in phase space due to the crossing of multiple cyclotron resonances in an inhomogeneous magnetic field is investigated. The influence of the inhomogeneity is most significant for small wave amplitudes, when stochastic heating is absent in a homogeneous plasma. The diffusion depends on the relationship between the wave amplitude, the inhomogeneity parameter and the angle of wave propagation. The dependence of the diffusion coefficients upon the mentioned parameters is investigated by means of computer simulations for the case of constant inhomogeneity and for two models of variable inhomogeneity: a monotonic change typical of magnetospheric conditions, and a sinusoidal change typical of tokamaks.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al'tshul, L. M. & Karpman, V. I. 1966 Soviet Phys. JETP, 22, 361.Google Scholar
Baranov, Yu. F. 1985 Fizika Plazmy, 11, 1199 (in Russian).Google Scholar
Karpman, V. I., Istomin, Ya. N. & Shklyar, D. R. 1975 Physica Scripta, 11, 278.CrossRefGoogle Scholar
Mazitov, R. K. 1965 Prikl. Mekh. Tekh. Fiz. 1, 27 (in Russian).Google Scholar
Nunn, D. 1971 Planet. Space Sci. 19, 1141.CrossRefGoogle Scholar
Nunn, D. 1974 Planet. Space Sci. 22, 197.CrossRefGoogle Scholar
O'Neil, T. M. 1965 Phys. Fluids, 8, 2255.CrossRefGoogle Scholar
Riyopoulos, S. 1985 Phys. Fluids, 28, 1097.CrossRefGoogle Scholar
Riyopoulos, S., Antonsen, T. M. & Ott, E. 1984 Phys. Fluids, 27, 184.CrossRefGoogle Scholar
Ryabova, N. A. & Shklyar, D. R. 1983 Phys. Lett. 97 A, 194.CrossRefGoogle Scholar
Solov'ev, V. V. & Shklyar, D. R. 1986 Soviet Phys. JETP, 63, 272.Google Scholar
Sudan, R. N. & Ott, E. 1971 J. Geophys. Res. 76, 4463.CrossRefGoogle Scholar
Timofeev, A. V. 1973 Usp. Fiz. Nauk, 110, 329 (in Russian).CrossRefGoogle Scholar