Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T08:38:32.308Z Has data issue: false hasContentIssue false

Asymptotic approximation for the dispersion relation of a hot magnetized plasma

Published online by Cambridge University Press:  13 March 2009

A. Bravo-Ortega
Affiliation:
Department of Physics, Auburn University, Auburn, Alabama 36849, USA
D. G. Swanson
Affiliation:
Department of Physics, Auburn University, Auburn, Alabama 36849, USA
A. H. Glasser
Affiliation:
Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA

Abstract

An asymptotic expression for the dielectric tensor e of a hot magnetized plasma is obtained employing the steepest descents method, via the transformation of the components of ε into their integral representation. The electrostatic Bernstein dispersion relation for oblique and perpendicular propagation is discussed under this treatment. It is shown that with this procedure the computation of the dispersion relation is up to 20 times faster when it is compared with the original expression, and the relative accuracy is usually as good as O·l% for a typical case.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Dover.Google Scholar
Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1967 Collective Oscillations in a Plasma. M.I.T. Press.Google Scholar
Arfken, G. 1970 Mathematical Methods for Physicists. Academic.Google Scholar
Baranov, Y. F. & Fedorov, V. I. 1980 Nucl. Fusion, 20, 1111.Google Scholar
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
Bernstein, I. B. 1958 Phys. Rev. 109, 10.Google Scholar
Bernstein, I. B. 1975 Phys. Fluids, 18, 320.CrossRefGoogle Scholar
Bhatnagar, V. P., Koch, R., Geilfus, P., Kirkpatrick, R. & Weynants, R. R. 1984 Nucl. Fusion, 24, 955.CrossRefGoogle Scholar
Censor, D. 1976 J. Plasma Phys. 16, 415.CrossRefGoogle Scholar
Colestock, P. L. & Kulp, J. L. 1980 IEEE Trans, on Plasma Sci. PS-8, 71.Google Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion function. Academic.Google Scholar
Fried, B. D., Hedrick, C. L. & McCune, J. 1968 Phys. Fluids, 11, 249.Google Scholar
Gautschi, W. 1964 Comm. ACM, 7, 479.Google Scholar
Gautschi, W. 1969 Comm. ACM, 12, 635.Google Scholar
Gautschi, W. 1970 SIAM J. 7, 187.Google Scholar
Martín, P. & González, M. A. 1979 Phys. Fluids, 22, 1413.Google Scholar
Ott, E., Hui, B. & Chu, K. R. 1980 Phys. Fluids, 23, 1031.Google Scholar
Schmitt, J. P. M. 1974 J. Plasma Phys. 12, 51.Google Scholar
Stix, T. H. 1962 Theory of Plasma Waves. McGraw-Hill.Google Scholar
Swanson, D. G. 1985 Phys. Fluids, 28, 2645.Google Scholar
Weitzner, H. & Batchelor, D. B. 1980 Phys. Fluids, 23, 1359.Google Scholar
Wong, K. L. & Ono, M. 1984 Nucl. Fusion, 24, 615.Google Scholar