Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T09:58:10.943Z Has data issue: false hasContentIssue false

Integrating evolution and biogeography: A case study involving Devonian crustaceans

Published online by Cambridge University Press:  20 May 2016

Alycia L. Rode
Affiliation:
Department of Geology, University of Kansas, 120 Lindley Hall, 1475 Jayhawk Blvd., Lawrence 66045
Bruce S. Lieberman
Affiliation:
Department of Geology, University of Kansas, 120 Lindley Hall, 1475 Jayhawk Blvd., Lawrence 66045 Department of Ecology and Evolutionary Biology, University of Kansas, 120 Lindley Hall, 1475 Jayhawk Blvd., Lawrence 66045,

Abstract

The integration of Geographic Information System (GIS) methodology within a phylogenetic and statistical framework provides a background against which to evaluate the relationship between biogeographic changes and evolution in the fossil record. A case study based on patterns in Middle and Late Devonian phyllocarids (Crustacea) illustrates the usefulness of this integrated approach. Using a combined approach enhances determination of rates of biodiversity change and the relationship between biogeographic and evolutionary changes. Because the interaction between speciation and extinction rates fundamentally determines biodiversity dynamics, and speciation and extinction rates are influenced by the geographic ranges of component taxa, the relationship between biogeography and evolution is important. Furthermore, GIS makes it possible to quantify paleobiogeographic ranges.

Phylogenetic biogeography resolved patterns of both vicariance and geodispersal and revealed that range expansions were more abundant than range contractions in Devonian phyllocarids. In addition, statistical tests on GIS-constrained species ranges and evolutionary-rate data revealed a relationship between increasing species' ranges and increases in both speciation and extinction rates. Extinction rate, however, increased more rapidly than speciation rate in the phyllocarids. The pattern of extinction rate increasing faster than speciation rate in the phyllocarids may illuminate aspects of the Late Devonian biodiversity crisis in particular, and protracted biodiversity crises in general.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayer, U., and McGhee, G. R. Jr. 1989. Periodicity of Devonian sedimentary and biological perturbations: implications for the Devonian timescale. Neues Jahrbuch für Geologie und Paläontologie Monatsheft, 1989:116.Google Scholar
Beecher, C. E. 1884. Ceratiocarididae from the Chemung and Waverly Groups of Pennsylvania. Second Geographical Survey of Pennsylvania Report of Progress, PPP:122.Google Scholar
Beecher, C. E. 1902. Revision of the Phyllocarida from the Chemung and Waverly groups of Pennsylvania. Quarterly Journal of the Geological Society of London, 58:441449.Google Scholar
Berry, J. K. 1995. Spatial Reasoning for Effective GIS. GIS World Books, Fort Collins, Colorado, 208 p.Google Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. Elsevier, Amsterdam, 427 p.Google Scholar
Brooks, D. R. 1985. Historical ecology: a new approach to studying evolution of ecological associations. Annals of the Missouri Botanical Garden, 72:660680.Google Scholar
Brooks, D. R., and McLennan, D. A. 1991. Phylogeny, Ecology, and Behavior. University of Chicago Press, Chicago, 434 p.Google Scholar
Burrough, P. A., and McDonnell, R. A. 1998. Principles of Geographic Information Systems. Oxford University Press, Oxford, 193 p.Google Scholar
Chou, Y. H. 1997. Exploring Spatial Analysis in Geographic Information Systems. OnWord Press, Sante Fe, New Mexico, 474 p.Google Scholar
Clarke, J. M. 1885. On the higher Devonian faunas of Ontario County, New York. United States Geological Survey Bulletin, 16:185.Google Scholar
Clarke, J. M. 1898a. The stratigraphic and faunal relationships of the Oneonta sandstones and shales, the Ithaca and the Portage Groups in Central New York. New York State Museum, 49th Annual Report of the Regents, 1895, 2:69.Google Scholar
Clarke, J. M. 1898b. Notes on some crustaceans from the Chemung Group of New York. I. A singularly ornamented phyllocarid genus, Pephricaris. New York State Museum, 49th Annual Report of the Regents, 1895, 2:731733.Google Scholar
Cohen, A. N., and Carlton, J. T. 1998. Accelerating invasion rate in a highly invaded estuary. Science, 279:555558.Google Scholar
Copeland, M. J. 1960a. The occurrence of Echinocaris and Spathiocaris (Phyllocarida) in western Canada, p. 111, pls. 1–3. In Copeland, M. J. and Bolton, T. E. (eds.), Canadian fossil Arthropoda, Eurypterida, Phyllocarida, and Decapoda. Geological Survey of Canada Bulletin, 60.Google Scholar
Copeland, M. J. 1960b. New occurrences of Ceratiocaris and Ptychocaris (Phyllocarida) from the Canadian Arctic, p. 4954, pl. 9. In Copeland, M. J. and Bolton, T. E. (eds.), Canadian fossil Arthropoda, Eurypterida, Phyllocarida, and Decapoda. Geological Survey of Canada Bulletin, 60.Google Scholar
Croizat, L., Nelson, G., and Rosen, D. E. 1974. Centers of origin and related concepts. Systematic Zoology, 23:265287.Google Scholar
Dalziel, I. W. D., Dalla Salda, L. H., and Gahagan, L. M. 1994. Paleozoic Laurentia–Gondwana interaction and the origin of the Appalachian-Andean mountain system. Geological Society of America Bulletin, 106:243252.Google Scholar
Dineley, D. L. 1984. Aspects of a Stratigraphic System: The Devonian. Macmillan, London, 223 p.CrossRefGoogle Scholar
Ebach, M. C., and Edgecombe, G. D. 2001. Cladistic biogeography; component-based methods and paleontological application, p. 235289. In Adrain, J. M., Edgecombe, G. D., and Lieberman, B. S. (eds.), Fossils, Phylogeny, and Form; An Analytical Approach. Kluwer Academic/Plenum, New York.Google Scholar
Eldredge, N. 1979. Alternative approaches to evolutionary theory. Bulletin of the Carnegie Museum of Natural History, 13:719.Google Scholar
Eldredge, N. 1998. Life in the Balance: Humanity and the Biodiversity Crisis. Princeton University Press, Princeton, New Jersey, 224 p.Google Scholar
Eldredge, N., and Ormiston, A. R. 1979. Biogeography of Silurian and Devonian trilobites of the Malvinokaffric Realm, p. 147167. In Gray, J. and Boucot, A. J. (eds.), Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State University Press, Corvallis.Google Scholar
Eller, E. R. 1935. New species of Echinocaris from the Upper Devonian, of Alfred Station, New York. Annals of the Carnegie Museum, 24:263274.Google Scholar
Eller, E. R. 1937. Echinocaris crosbyensis, a new species from the Upper Devonian of New York. Annals of the Carnegie Museum, 25:257259.Google Scholar
Environmental Systems Research Institute, Inc. (ESRI). 1999. ArcView GIS 3.2. Redlands, California.Google Scholar
Feist, R. 1991. Late Devonian trilobite crises. Historical Biology, 5:197214.Google Scholar
Feldmann, R. M., and Mckenzie, S. 1981. Echinocaris multispinosis, a new echinocarid (Phyllocarida) from the Chagrin Formation (Late Devonian) of Ohio. Journal of Paleontology, 55:383388.Google Scholar
Feldmann, R. M., Boswell, R. M., and Kammer, T. W. 1986. Tropidocaris salsiusculus, a new rhinocarid (Crustacea: Phyllocarida) from the Upper Devonian Hampshire Formation of West Virginia. Journal of Paleontology, 60:379383.Google Scholar
Ferguson, C. A., Bodenbender, B. E., Hones, J. L., and Ahmed, K. 2001. Recording the fossil record: a GIS database of Middle Devonian fossils in the Michigan Basin. Geological Society of America Annual Meeting, 2000, Abstracts with Programs, 109:A131.Google Scholar
Foote, M. 1994. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology, 20:424444.Google Scholar
Foote, M. 2000a. Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology, 26:578605.Google Scholar
Foote, M. 2000b. Origination and extinction components of taxonomic diversity: general problems, p. 578605. In Erwin, D. H. and Wing, S. L. (eds.), Deep Time: Paleobiology's Perspective. Paleobiology, 26 (Suppl. to No. 4).Google Scholar
Fortey, R. A., and Cocks, L. R. M. 1992. The early Palaeozoic of the North Atlantic region as a test case for the use of fossils in continental reconstruction. Tectonophysics, 206:147158.Google Scholar
Geological Society of America (GSA). 1999. 1999 Geologic Time Scale. Palmer, A. R. and Geissman, J., compilers.Google Scholar
Graham, R. W. 2000. FAUNMAP database: filter effects from field to literature to database to analysis to interpretation. Geological Society of America Annual Meeting, 2000, Abstracts with Programs, 109:A131.Google Scholar
Hall, J. 1863. Contributions to paleontology, no. 6. On the occurrence of crustacean remains of the genera Ceratiocaris and Dithryocaris, with a notice of some new species from the Hamilton Group and Genesee Slate. 16th Report of the New York State Cabinet of Natural History, Appendix D:7175.Google Scholar
Hall, J., and Clarke, J. M. 1888. Trilobites and other Crustacea of the Oriskany, Upper Helderberg, Hamilton, Portage, Chemung, and Catskill groups. New York State Geological Survey, Palaeontology, 7:ilxiv, 1–236.Google Scholar
Haltuch, M. A., Berkman, P. A., and Garton, D. W. 2000. Geographic information system (GIS) analysis of ecosystem invasion: exotic mussels in Lake Erie. Limnology and Oceanography, 45:17781787.Google Scholar
Han, N., and Zhou, Y. 1993. A new species of Echinocaris (Phyllocarida) in Late Devonian from Lingling, Hunan. Acta Palaeontologica Sinica, 32:228232.Google Scholar
Hannibal, J. T. 1990. Echinocaris: a mid-Paleozoic crustacean. Unpublished Ph.D. dissertation, Kent State University, Kent, Ohio, 362 p.Google Scholar
Hillis, D. M., and Huelsenbeck, J. P. 1992. Signal, noise, and reliability in molecular phylogenetic analyses. Journal of Heredity, 83:189195.Google Scholar
Humphries, C. J., and Parenti, L. 1986. Cladistic biogeography. Oxford Monographs in Biogeography, 2:198.Google Scholar
Hunn, C. A., and Upchurch, P. 2001. The importance of time/space in diagnosing the causality of phylogenetic events: towards a “chronobiogeographical” paradigm? Systematic Biology, 50:391407.Google Scholar
Iverson, L. R., and Prasad, A. 1998. Estimating regional plant biodiversity with GIS modeling. Diversity and Distributions, 4:4961.Google Scholar
Jaeckel, O. 1921. Einen neuen Phyllocariden aus dem Unterdevon der Bundenbacher Dachschiefer. Zeitschrift der deutschen geologischen Gesellschaft, Monatsbericht, 72:290292.Google Scholar
Jones, T. R., and Woodward, H. 1889. I.—On some new Devonian fossils. Geological Magazine, n. s., decade 3, 6:384388.Google Scholar
Juliusson, L., and Graham, R. 1999. Geographic information systems and vertebrate paleontology. Journal of Vertebrate Paleontology, 19(Suppl. to No. 3):56.Google Scholar
Jux, U. 1959. Phyllocariden-reste aus dem oberen Mitteldevon der Bergish Gladbacj-Paffrather Mulde. Palaeontologishce Zeitschrift, 33:166171.Google Scholar
Jux, U. 1960. Montecaris lehmanni, a new crustacean from the Rhenish Devonian and the problem of its systematic position. Journal of Paleontology, 34:11291152.Google Scholar
Kalvoda, J. 1990. Late Devonian–Early Carboniferous paleobiogeography of benthic foraminifera and climatic oscillations, p. 183188. In Kauffman, E. G. and Walliser, O. H. (eds.), Extinction Events in Earth History. Springer, New York.Google Scholar
Kent, D. V. 1985. Paleocontinental setting for the Catskill Delta, p. 913. In Woodrow, D. L. and Sevon, W. D. (eds.), The Catskill Delta. Geological Society of America Special Paper, 201.Google Scholar
Klapper, G. 1995. Preliminary analysis of Frasnian, Late Devonian conodont biogeography. Historical Biology, 10:103117.Google Scholar
Klapper, G., and Johnson, J. G. 1980. Endemism and dispersal of Devonian conodonts. Journal of Paleontology, 54:400455.Google Scholar
Klassen, G. J., Mooi, R. D., and Locke, A. 1991. Consistency indices and random data. Systematic Zoology, 40:446457.Google Scholar
Lieberman, B. S. 1997. Early Cambrian paleogeography and tectonic history: a biogeographic approach. Geology, 25:10391042.Google Scholar
Lieberman, B. S. 2000. Paleobiogeography: Using Fossils to Study Global Change, Plate Tectonics, and Evolution. Kluwer Academic Press/Plenum, New York, 208 p.Google Scholar
Lieberman, B. S. 2001. Analyzing speciation rates in macroevolutionary studies, p. 340358. In Adrain, J., Edgecombe, G. D., and Lieberman, B. S. (eds.), Fossils, Phylogeny and Form: An Analytical Approach. Kluwer Academic Press/Plenum, New York.Google Scholar
Lieberman, B. S. 2003. Unifying theory and methodology in biogeography. Evolutionary Biology, 33:125.Google Scholar
Lieberman, B. S., and Eldredge, N. 1996. Trilobite biogeography in the Middle Devonian: geological processes and analytical methods. Paleobiology, 22:6679.Google Scholar
McGhee, G. R. Jr. 1981. Evolutionary replacement of ecological equivalents in Late Devonian benthic marine communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 34:267283.Google Scholar
McGhee, G. R. Jr. 1988. The Late Devonian extinction event: evidence for abrupt ecosystem collapse. Paleobiology, 14:250257.Google Scholar
McGhee, G. R. Jr. 1990. The Frasnian-Famennian extinction record in the eastern United States, p. 161168. In Walliser, O. H. and Kauffman, E. G. (eds.), Extinction Events in Earth History. Springer, Berlin.Google Scholar
McGhee, G. R. Jr. 1996. The Late Devonian Mass Extinction: The Frasnian/Famennian Crisis. Columbia University Press, New York, 303 p.Google Scholar
Minitab Inc. 1996. Minitab Release 11.21. State College, Pennsylvania.Google Scholar
Morrone, J. J., and Crisci, J. V. 1995. Historical biogeography: introduction to methods. Annual Reviews of Ecology and Systematics, 26:373401.Google Scholar
Morzadec, P., and Rolfe, W. D. I. 1968. Découverte d'un nouveau Phyllocaride (Crustacés) dans le Dévonien supérieur de Massif armoricain. C. R. sommaire Societe Géologique de France, 6:189190.Google Scholar
Nelson, G., and Platnick, N. I. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York, 567 p.Google Scholar
Oliver, W. A. Jr. 1976. Biogeography of the Devonian rugose corals. Journal of Paleontology, 50:365373.Google Scholar
Oliver, W. A. Jr. 1990. Extinctions and migrations of Devonian rugose corals in the Eastern Americas realm. Lethaia, 23:167178.CrossRefGoogle Scholar
Oliver, W. A. Jr., and Pedder, A. E. H. 1994. Crises in the Devonian history of rugose corals. Paleobiology, 20:178190.Google Scholar
Page, R. D. M. 1990. Component analysis: a valiant failure? Cladistics, 6:119136.Google Scholar
Platnick, N. I., and Nelson, G. 1978. A method of analysis for historical biogeography. Systematic Zoology, 27:116.CrossRefGoogle Scholar
Racheboeuf, P. R. 1998. Mid-Devonian phyllocarid crustacea from Bolivia. Palaeontology, 41:103124.Google Scholar
Raymond, A., and Mertz, C. 1995. Laurussian land-plant diversity during the Silurian and Devonian: mass extinction, sampling bias, or both? Paleobiology, 21:7491.Google Scholar
Rode, A. L. 2002. Using GIS to integrate species ranges, evolution, and eustacy during the Late Devonian biodiversity crisis. Geological Society of America Annual Meeting, 2002, Abstracts with Programs, 111:141–3.Google Scholar
Rode, A. L., and Lieberman, B. S. 2000. Using phylogenetics and GIS to investigate the role in invasive species in the Late Devonian mass extinction. Geological Society of America Annual Meeting, 2000, Abstracts with Programs, 109:A368.Google Scholar
Rode, A. L., and Lieberman, B. S. 2001. Assessing the role of invasive species in mediating mass extinctions: a case study using Devonian phyllocarids. PaleoBios, 21:109.Google Scholar
Rode, A. L., and Lieberman, B. S. 2002. Phylogenetic and biogeographic analysis of Devonian phyllocarid crustaceans. Journal of Paleontology, 76:271286.Google Scholar
Rode, A. L., and Lieberman, B. S. 2003. GIS and phylogenetics, a combined approach to understanding biogeographic changes in the Late Devonian. Geological Society of America Annual Meeting, 2003, Abstracts with Programs, 112:157–8.Google Scholar
Rolfe, W. D. I. 1962. A new phyllocarid crustacean from the Upper Devonian of Ohio. Breviora, 151:17.Google Scholar
Rolfe, W. D. I. 1969. Phyllocarida, p. R296R331. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology Part R, Arthropoda 4 (1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Rolfe, W. D. I., and Edwards, V. A. 1979. Devonian Arthropoda (Trilobita and Ostracoda excluded). Special Papers in Palaeontology, 23:325329.Google Scholar
Rosen, D. E. 1978. Vicariant patterns and historical explanation in biogeography. Systematic Zoology, 27:159188.Google Scholar
Ross, M. I., and Scotese, C. R. 2000. PaleoGIS/Arcview 3.5. PALEOMAP Project, University of Texas, Arlington.Google Scholar
Scotese, C. R. 1998. PALEOMAP Animations. PALEOMAP Project, University of Texas, Arlington.Google Scholar
Scotese, C. R., and Mckerrow, W. S. 1990. Revised world maps and introduction, p. 217277. In Scotese, C. R. and McKerrow, W. S. (eds.), Palaeozoic Palaeogeoegraphy and Biogeography. Geological Society of London Memoir, 51.Google Scholar
Smith, A. B. 1994. Systematics and the Fossil Record: Documenting Evolutionary Patterns. Blackwell Scientific, Cambridge, Massachusetts, 223 p.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry: The Principles and Practice of Statistics in Biological Research. W.H. Freeman, New York, 887 p.Google Scholar
Stanley, S. M. 1979. Macroevolution, Pattern and Process. W. H. Freeman, San Francisco, 332 p.Google Scholar
Stanley, S. M. 1990. The general correlation between rate of speciation and rate of extinction: fortuitous causal linkages, p. 103127. In Ross, R. M. and Allmon, W. D. (eds.), Causes of Evolution: A Paleontological Perspective. University of Chicago Press, Chicago.Google Scholar
Stewart, G. A. 1933. A phyllocarid crustacean from the Devonian rocks of Ohio. American Midland Naturalist, 14:363366.Google Scholar
Stoms, D. M., Davis, F. W., Cogan, C. B., Painho, M. O., Duncan, B. W., Scepan, J., and Michael, S. J. 1993. Geographic analysis of California condor sighting data. Conservation Biology, 7:148159.Google Scholar
Stumm, E. C., and Chilman, R. B. 1969. Phyllocarid crustaceans from the Middle Devonian Silica Shale of northwestern Ohio and southeastern Michigan. Contributions from the Museum of Paleontology, University of Michigan, 23:5371.Google Scholar
Sturgeon, M. T., Hlavin, W. J., and Kesling, R. V. 1964. Rare crustaceans from the Upper Chagrin Shale in northern Ohio. Contributions from the Museum of Paleontology, University of Michigan, 19:4764.Google Scholar
Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods) [computer program]. Version 4.0b10. Sinauer, Sunderland, Massachusetts.Google Scholar
Tucker, R. D., Bradley, D. C., Ver Straeten, C. A., Harris, A. G., Ebert, J. R., and McCutcheon, S. R. 1998. New U-Pb zircon ages and the duration and division of Devonian time. Earth and Planetary Science Letters, 158:175786.Google Scholar
van der Voo, R. 1988. Paleozoic paleogeography of North America, Gondwana, and intervening displaced terranes: comparisons of paleomagnetism with paleoclimatology and biogeographical patterns. Geological Society of America Bulletin, 100:311324.Google Scholar
Vrba, E. S. 1980. Evolution, species and fossils: how does life evolve? South African Journal of Science, 76:6184.Google Scholar
Whitfield, R. P. 1880. Notice of new forms of fossil crustaceans from the Upper Devonian rocks of Ohio, with descriptions of new genera and species. American Journal of Science, third series, 19:3342.Google Scholar
Wiley, E. O. 1988. Vicariance biogeography. Annual Review of Ecological Systematics, 19:513542.Google Scholar
Wiley, E. O., and Mayden, R. L. 1985. Species and speciation in phylogenetic systematics, with examples from North American fish fauna. Annals of the Missouri Botanical Garden, 72:596635.Google Scholar
Williams, E. A., Friend, P. F., and Williams, B. P. J. 2000. A review of Devonian time scales: databases, construction, and new data, p. 121. In Friend, P. F. and Williams, B. P. J. (eds.), New Perspectives on the Old Red Sandstone. Geological Society of London Special Publications, 180.Google Scholar
Young, G. C. 1987. Devonian paleontological data and the Armorica problem. Palaeogeography, Palaeoclimatology, and Palaeoecology, 60:283304.Google Scholar