Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T04:38:33.337Z Has data issue: false hasContentIssue false

Gastropod phylogenetics: Progress, problems, and implications

Published online by Cambridge University Press:  20 May 2016

Peter J. Wagner*
Affiliation:
Dept. of Geology, Field Museum of Natural History, Chicago, Illinois 60605,

Abstract

Twentieth century fossil gastropod systematics relied extensively on neontological paradigms. However, recent appreciation of the extant gastropod diversity suggests that those early paradigms provided very unsound models. This likely is a greater problem for Paleozoic taxa than for Meso-Cenozoic gastropods because Meso-Cenozoic taxa frequently have easily recognized extant relatives whereas Paleozoic taxa frequently do not. Also, many of the taxa that apparently diverged in the Paleozoic now are limpets and retain little information about the morphologies of their coiled ancestors.

Snails could be a model taxon for investigating macroevolutionary patterns because of the clade's dense fossil record. However, paleontologists usually study only adult shells (teleoconchs), and many malacologists maintain that teleoconch characters reflect phytogeny poorly if at all. This is important because many macroevolutionary hypotheses make their most specific predictions given phylogeny. Studies evaluating species- or genus-level relationships typically use more shell characters and states than do studies evaluating suprageneric relationships, as expected if shells evolve rapidly. Monte Carlo tests reject a null hypothesis that rates of homoplasy are equal among shell and soft-anatomy characters for two neogastropod clades, but suggest that these rates differ by less than an order of magnitude. Finally, teleoconch characters fail to unite bellerophontiform species with gastropod muscle scars but successfully unites clusters bellerophontiform species with tergomyan muscle scars. These results corroborate the conventional wisdom that teleoconch character distributions reflect abundant homoplasy, but the results also suggest that these distributions reflect phylogeny, too.

If we can control the effects of homoplasy, then gastropods are an excellent “model” group for testing macroevolutionary hypotheses such as changing rates of evolution. Two obvious candidates are rates of morphologic evolution among basal neogastropods, and rates of molecular evolution within clades radiating after the K/T mass extinction.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmon, W. D. 1990. Review of the Bullia Group (Gastropoda: Nassariidáe) with comments on its evolution, biogeography, and phylogeny. Bulletins of American Paleontology, 99:1179.Google Scholar
Allmon, W. D. 1994. Patterns and process of heterochrony in Lower Tertiary turritelline gastropods, U.S. Gulf and Atlantic coastal plains. Journal of Paleontology, 68:8095.CrossRefGoogle Scholar
Archie, J. W. 1996. Measures of homoplasy. p. 153187. In Sanderson, M. J. and Hufford, L. (eds.), Homoplasy—The Recurrence of Similarity in Evolution. Academic Press, San Diego.Google Scholar
Bandel, K. 1988. Repräsentieren die Euomphaloidea eine natürliche Einheit der Gastropoden? Mitteilungen Geologie-Paläontologie Institut der Universitat Hamburg, 67:133.Google Scholar
Bandel, K. 1991. Schlitzbandschnecken mit permutteriger Schale aus den triassischen St. Cassian-Schichten der Dolomiten. Annheitungen Naturhistorischen Museum Wien, 92:153.Google Scholar
Bandel, K. 1992. Platyceratidae from the Triassic St. Cassian Formation and the evolutionary history of the Neritomorpha (Gastropoda). Paläontologische Zeitschrift, 66:231240.Google Scholar
Bandel, K. 1993. Evolutionary history of sinistral archaeogastropods with and without slit (Cirroidea, Vetigastropods). Freiberger Forschungshefte, 450:4181.Google Scholar
Bandel, K. 2000. The new family Cortinellidae (Gastropoda, Mollusca) connected to a review of the evolutionary history of the subclass Neritomorpha. Neues Jahrbuch für Geologie und Paläontologie Abhandlugen, 217:111129.CrossRefGoogle Scholar
Bandel, K., and Fryda, J. 1999. Notes on the evolution and higher classification of the subclass Neritimorpha (Gastropoda) with the description of some new taxa. Geologica et Palaeontologica, 33:219235.Google Scholar
Batten, R. L., Rollins, H. B., and Gould, S. J. 1967. Comments on ‘The adaptive significance of gastropod torsion'. Evolution, 21:405406.Google Scholar
Bieler, R. 1988. Phylogenetic relationships in the gastropod family Architectonicidae, with notes on the family Mathilididae (Allogastropoda), p. 205240. In Ponder, W. F. and Warén, A. (eds.), Prosobranch Phylogeny: Proceedings of the 9th International Malacological Congress.Google Scholar
Bieler, R. 1992. Gastropod phylogeny and systematics. Annual Review of Ecology and Evolution, 23:211238.Google Scholar
Boulding, E. G., and Hay, T. K. 1993. Quantitative genetics of shell formation of an intertidal snail: constraints on short-term response to selection. Evolution, 47:576592.CrossRefGoogle Scholar
Boulding, E. G., and Van Alstyne, K. L. 1993. Mechanisms of differential survival and growth of two species of Littorina on wave-exposed and on protected shores. Journal of Experimental Marine Biology and Ecology, 169:139166.CrossRefGoogle Scholar
Camin, J. H., and Sokal, R. R. 1965. A method for deducing branching sequences in phylogeny. Evolution, 19:311326.CrossRefGoogle Scholar
Carter, J. G., and Hall, R. M. 1990. Part 3, Polyplacophora, Scaphopoda, Archaeogastropoda and Paragastropoda (Mollusca), p. 2951. In Carter, J. C. (ed.), Skeletal Biomineralisation: Patterns, Processes and Evolutionary Trends, Volume II, atlas and index. Van Nostrand Reinhold, New York.Google Scholar
Chappill, J. A. 1989. Quantitative characters in phylogenetic analysis. Cladistics, 5:217234.CrossRefGoogle Scholar
Colgan, D. J., Ponder, W. F., and Eggler, P. E. 2000. Gastropod evolutionary rates and phylogenetic relationships assessed using partial 28S rDNA and histone H3 sequence. Zoologica Scripta, 29:2963.CrossRefGoogle Scholar
Crofts, D. R. 1937. The development of Haltiotis tuberculata, with special reference to organogenesis during torsion. Philosophical Transactions of the Royal Society of London Series B, 228:219268.Google Scholar
Crofts, D. R. 1955. Muscle morphogenesis in primitive gastropods and its relation to torsion. Proceedings of the Zoological Society of London, 125:711750.CrossRefGoogle Scholar
Davis, G. M., and Pons da Silva, M. C. 1984. Potamolithus: morphology, convergence, and relationships among hydroboid snails. Malacologia, 25:73108.Google Scholar
Davis, G. M., Kuo, Y.-H., Hoagland, K. E., Chen, P.-L., Yang, H.-M., and Chen, D.-J. 1985. Erhaia, a new genus and new species of Pomatiopsidae from China (Gastropoda: Rissoacea). Proceedings of the Academy of Natural Sciences of Philadelphia, 137:4878.Google Scholar
DeRenzi, M., and Brito, J. M. 1991. Growth rhythms in a living freshwater gastropod and their paleobiological consequences. Neues Jahrbuch für Geologie und Paläontologie Abhandlugen, 182:8598.CrossRefGoogle Scholar
Doyle, J. A., and Donoghue, M. J. 1987. The importance of fossils in elucidating seed plant phylogeny and macroevolution. Reviews of Paleobotany and Palynology, 50:6395.CrossRefGoogle Scholar
Dzik, J. 1982. Larval development and relationships of Mimospira—a presumably hypertrophic Ordovician gastropod. Geologiska Föreningens i Stockholm Förhandlingar, 104:231239.CrossRefGoogle Scholar
Dzik, J. 1994. Evolution of ‘small shelly fossils’ assemblages. Acta Palaeontologica Polonica, 39:247313.Google Scholar
Edlinger, K. 1988. Torsion in gastropods: a phylogenetic model, p. 241250. In Ponder, W. F. and Warén, A. (eds.), Prosobranch Phylogeny: Proceedings of the 9th International Malacological Congress, 4.Google Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: an alternative to phyletic gradualism, p. 82115. In Schopf, T. J. M. (ed.), Models in paleobiology. Freeman, San Francisco.Google Scholar
Emberton, K. C. 1995. When shells do not tell: 145 million years of evolution in North America's polygyrid land snails, with a revision and conservation priorities. Malacologia, 37:69110.Google Scholar
Erwin, D. H. 1988. The genus Glyptospira (Gastropoda: Trochacea) from the Permian of the southwestern United States. Journal of Paleontology, 88:868879.CrossRefGoogle Scholar
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 27:401410.CrossRefGoogle Scholar
Foote, M. 1996. Models of morphologic diversification, p. 6286. In Jablonski, D., Erwin, D. H., and Lipps, J. H. (eds.), Evolutionary Paleobiology: Essays in Honor of James W. Valentine. University of Chicago Press, Chicago.Google Scholar
Foote, M., and Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature, 398:415417.CrossRefGoogle ScholarPubMed
Foote, M., Hunter, J. P., Janis, C. M., and Sepkoski, J. J. Jr. 1999. Evolutionary and preservational constraints on the origins of major biologic groups: limiting divergence times of eutherian mammals. Science, 283:13101314.CrossRefGoogle Scholar
Fortey, R. A., and Peel, J. S. 1990. Early Ordovician trilobites and molluscs from the Poulsen Cliff Formation, Washington Land, western North Greenland. Bulletin of the Geological Society of Denmark, 38:1132.CrossRefGoogle Scholar
Fox, D. L., Fisher, D. C., and Leighton, L. R. 1999. Reconstructing phylogeny with and without temporal data. Science, 284:18161819.CrossRefGoogle ScholarPubMed
Fretter, V. 1988. New archaeogastropod limpets from the hydrothermal vents; superfamily Lepetodrilacea, II, Anatomy. Philosophical Transactions of the Royal Society of London Series B, 318:3382.Google Scholar
Fretter, V. 1989. The anatomy of some new archaeogastropod limpets (Superfamily Peltospiracea) from hydrothermal vents. Journal of Zoology, London (A), 218:123169.CrossRefGoogle Scholar
Fretter, V., Graham, A., and McLean, J. H. 1981. The anatomy of the Galapagos rift limpet, Neomphalus fretterae . Malacologia, 21:337361.Google Scholar
Fryda, J. 1997. Oldest representatives of the superfamily Cirroidea (Vetigastropoda) with notes on early phylogeny. Journal of Paleontology, 72:839847.CrossRefGoogle Scholar
Fryda, J. 1999. Shape convergence in gastropod shells: an example from the Early Devonian Plectonotus (Boucotonotus)—Palaeozygopleura community of the Prague Basin (Bohemia). Mitteilungen Geologie-Paläontologie Institut der Universitat Hamburg, 83:179190.Google Scholar
Garstang, W. 1929. The origin and evolution of larval forms. British Association for the Advancement of Sciences, Report of Annual Meetings, 96:7798.Google Scholar
Gauthier, J. A., Kluge, A. G., and Rowe, T. 1988. Amniote phylogeny and the importance of fossils. Cladistics, 4:105209.CrossRefGoogle Scholar
Ghiselin, M. T. 1966. The adaptive significance of gastropod torsion. Evolution, 20:337348.CrossRefGoogle ScholarPubMed
Goldman, N., Anderson, J. P., and Rodrigo, A. G. 2000. Likelihood-based tests of topologies in phylogenetics. Systematic Biology, 49:652670.CrossRefGoogle ScholarPubMed
Golikov, A. N., and Starobogatov, Y. I. 1975. Systematics of prosobranch gastropods. Malacologia, 15:185232.Google Scholar
Gould, S. J. 1980. Is a new and general theory of evolution emerging? Paleobiology, 6:119130.Google Scholar
Haasl, D. M. 2000. Phylogenetic relationships among nassariid gastropods. Journal of Paleontology, 74:839852.2.0.CO;2>CrossRefGoogle Scholar
Harasewych, M. G. 1984. Comparative anatomy of four primitive muricacean gastropods: implications for trophonine phylogeny. American Malacological Bulletin, 3:1126.Google Scholar
Harper, J. A., and Rollins, H. B. 1982. Recognition of Monoplacophora and Gastropoda in the fossil record: a functional morphological look at the bellerophont controversy, p. 227232. In Proceedings of the Third North American Paleontological Convention.Google Scholar
Harper, J. A., and Rollins, H. B. 2000. The bellerophont controversy revisited. American Malacological Bulletin, 15:147156.Google Scholar
Haszprunar, G. 1988. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. Journal of Molluscan Studies, 54:367441.CrossRefGoogle Scholar
Haszprunar, G. 1989. New slit-limpets (Scissurellacea and Fissurellacea) from hydrothermal vents, P. 2, anatomy and relationships. Contributions in Science, Natural History Museum of Los Angeles County, 408:117.Google Scholar
Hickman, C. S. 1988. Archaeogastropod evolution, phylogeny and systematics: a re-evaluation, p. 1734. In Ponder, W. F. and Warén, A. (eds.), Prosobranch Phylogeny: Proceedings of the 9th International Malacological Congress, 4.Google Scholar
Hickman, C. S. 1996. Phylogeny and patterns of evolutionary radiation in trochoidean gastropods, p. 177198. In Taylor, J. (ed.), Origin and Evolutionary Radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Hickman, C. S., and McLean, J. H. 1990. Systematic revision and suprageneric classification of trochacean gastropods. Science Series Natural History Museum of Los Angeles County, 35:95.Google Scholar
Horný, R. J. 1963. Lower Paleozoic Bellerophontina (Gastropoda) of Bohemia. Sborník Geologickych Ved, 2:57164.Google Scholar
Horný, R. J. 1986. Muscle scars in Sinuites (Strangulites) (Mollusca) from the Ordovician of Bohemia. Casopis Národni Muzea—Rada Prirodověná, 155:112118.Google Scholar
Horný, R. J. 1991. Shell morphology and muscle scars of Sinuitopsis neglecta Perner (Mollusca, Monoplacophora). Casopis Národni Muzea—Rada Prirodověná, 157:81105.Google Scholar
Horný, R. J. 1992. Muscle scars in Sinuites (Mollusca, Gastropoda) from the Lower Ordovician of Bohemia. Casopis Národni Muzea—Rada Prirodověná, 158:79100.Google Scholar
Horný, R. J. 1995a. Muscle attachment areas in the Silurian bellerophontacean gastropods Bellerophon scaber (Perner) and Bubovicus tardus (Barrande in Perner). Acta Musei Nationalis Pragae, Series B—Historia Naturalis, 50:1324.Google Scholar
Horný, R. J. 1995b. Adapertural location of the retractor muscle attachment area in Oriostoma (Mollusca, Gastropoda): a consequence of mode of life. Casopis Národni Muzea—Rada Prirodověná, 164:3944.Google Scholar
Horný, R. J. 1995c. Secondary shell deposits and presumed mode of life in Sinuites (Mollusca, Gastropoda). Acta Musei Nationalis Pragae, Series B—Historia Naturalis, 51:89103.Google Scholar
Horný, R. J. 1996. Retractor muscle scars in Gamadiscus (Mollusca, Tergomya). Bulletin of the Czech Geological Survey, 71:245249.Google Scholar
Horný, R. J. 1997a. Bucanopsina gen. n., a new bellerophontoidean gastropod with circumbilical muscle attachment areas from the Middle Ordovician of Bohemia. Bulletin of the Czech Geological Survey, 72:513.Google Scholar
Horný, R. J. 1997b. Circumbilical retractor muscle attachment areas in the Upper Ordovician bellerophontoidean gastropod Grandostoma grande (Barrande in Perner 1903). Casopis Národni Muzea—Rada Prirodověná 166:99104.Google Scholar
Horný, R. J. 1997c. Circumbilical retractor muscle attachment area in the Ordovician trilobed bellerophontoidean gastropod Tritonophon peeli sp. n. (Mollusca). Bulletin of the Czech Geological Survey, 72:333338.Google Scholar
Horný, R. J. 1999. Circumbilical retractor muscle attachment areas found in Tropidodiscus (Gastropoda, Bellerophontoidea). Journal of the Czech Geological Survey, 44:126130.Google Scholar
Horný, R. J., and Peel, J. S. 1996. Carcassonnella, a new Lower Ordovician bellerophontiform mollusc with dorsally located retractor muscle attachments (Class Tergomya). Bulletin of the Czech Geological Survey, 71:305331.Google Scholar
Horný, R. J., and Vizcaïno, D. 1995. Thoralispira, a new Lower Ordovician cyrtonellid genus (Mollusca, Tergomya) from the Montagne Noire, southern France. Bulletin of the Czech Geological Survey, 70:2541.Google Scholar
Houbrick, R. S. 1984. Revision of higher taxa in genus Cerithidea (Mesogastropoda: Potamididae) based on comparative morphology and biological data. American Malacological Bulletin, 2:120.Google Scholar
Houbrick, R. S. 1988. Cerithioidean phylogeny, p. 88128. In Ponder, W. F. and Warén, A. (eds.), Prosobranch Phylogeny: Proceedings of the 9th International Malacological Congress, 4.Google Scholar
Huelsenbeck, J. P. 1991a. Tree-length distribution skewness: an indicator of phylogenetic information. Systematic Zoology, 40:257270.CrossRefGoogle Scholar
Huelsenbeck, J. P. 1991b. When are fossils better than extant taxa in phylogenetic analysis? Systematic Zoology, 40:458469.Google Scholar
Huelsenbeck, J. P., and Rannala, B. 1997. Maximum likelihood estimation of topology and node times using stratigraphic data. Paleobiology, 23:174180.CrossRefGoogle Scholar
Huelsenbeck, J. P., Rannala, B., and Larget, B. 2000. A Bayesian framework for the analysis of cospeciation. Evolution, 54:352364.CrossRefGoogle ScholarPubMed
Jensen, K. R. 1996a. Phylogenetic systematics and classification of the Sacoglossa (Mollusca, Gastropoda, Opisthobranchia). Philosophical Transactions of the Royal Society of London Series B, 351:91122.Google Scholar
Jensen, K. R. 1996b. The Diaphanidae as a possible sister group of the Sacoglossa (Gastropoda, Opisthobranchia), p. 231247. In Taylor, J. D. (ed.), Origin and Evolutionary Radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Jung, Y. 1992. Phylogenetic relationships of some planorbid genera (Gastropoda: Lymophila). Malacological Review, 25:73192.Google Scholar
Kluge, A. G., and Farris, J. S. 1969. Quantitative phyletics and the evolution of anurans. Systematic Zoology, 18:132.CrossRefGoogle Scholar
Knight, J. B. 1931. The gastropods of the St. Louis, Missouri, Pennsylvanian outlier: the Subultidae. Journal of Paleontology, 5:177229.Google Scholar
Knight, J. B. 1933. The gastropods of the St. Louis, Missouri, Pennsylvanian outlier, VI: the Neritidae. Journal of Paleontology, 7:359392.Google Scholar
Knight, J. B. 1934. The gastropods of the St. Louis, Missouri, Pennsylvanian outlier, VIII: the Turritellidae. Journal of Paleontology, 8:433447.Google Scholar
Knight, J. B. 1947. Bellerophont muscle scars. Journal of Paleontology, 21:264267.Google Scholar
Knight, J. B. 1952. Primitive fossil gastropods and their bearing on gastropod classification. Smithsonian Miscellaneous Collections, 117:156.Google Scholar
Knight, J. B., Batten, R. L., and Yochelson, E. L. 1954. Mollusca: Gastropoda. Bulletin of the Museum of Comparative Zoology, 112:173179.Google Scholar
Knight, J. B., Cox, L. R., Batten, R., and Yochelson, E. L. 1960. Systematic descriptions, p. 169324. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. I, Mollusca 1. Geological Society of America and the University of Kansas Press, Lawrence.Google Scholar
Koken, E. 1897. Die Gastropoden des baltischen Untersilurs. Bulletin de l'Académie Impériale des Sciences de St. Pétersburg, 7:97214.Google Scholar
Kool, S. P. 1993a. The systematic position of the genus Nucella (Prosobranchia: Muricidae: Ocenbrinae). Nautilus, 107:4357.Google Scholar
Kool, S. P. 1993b. Phylogenetic analysis of the Rapaninae (Neogastropoda: Muricidae). Malacologia, 35:155259.Google Scholar
Kosnik, M. A. 1997. A new genus (Gastropoda: Neritopsidae) from the Permian of west Texas. Journal of Paleontology, 71:5356.CrossRefGoogle Scholar
Kumar, S., and Hedges, S. B. 1998. A molecular timescale for vertebrate evolution. Nature, 392:917920.CrossRefGoogle ScholarPubMed
Lang, A. 1900. Lehrbuch der vergleichenden Anatomie der Wirbellosen Tiere. Fischer, Jena, 509 p.CrossRefGoogle Scholar
Larget, B., and Simon, D. L. 1999. Markov Chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16:750759.CrossRefGoogle Scholar
Le Quesne, W. J. 1969. A method of selection of characters in numerical taxonomy. Systematic Zoology, 18:201205.CrossRefGoogle Scholar
Lewis, P. O. In press. Maximum likelihood phylogenetic inference: modeling discrete morphological characters. Systematic Biology.Google Scholar
Lindberg, D. R. 1988. The Patellogastropoda, p. 3563. In Ponder, W. F. and Warén, A. (eds.), Prosobranch Phylogeny: Proceedings of the 9th International Malacological Congress, 4.Google Scholar
Lindström, G. 1884. The Silurian Gastropoda and Pteropoda of Gotland. Kongliga Svenska Vetenskaps-Akademiens Handlingasr, 19:1250.Google Scholar
Linsley, R. M. 1973. The Omphalocirridae: a new family of Palaeozoic Gastropoda which exhibits sexual dimorphism. Memoirs of the National Museum of Victoria, 39:3354.CrossRefGoogle Scholar
Linsley, R. M., and Kier, W. M. 1984. The Paragastropoda: a proposal for a new class of Paleozoic Mollusca. Malacologia, 25:241254.Google Scholar
MacClintock, C. 1968. Shell structure of patelloid and bellerophontoid gastropods (Mollusca). Peabody Museum of Natural History Bulletin, 22:1140.Google Scholar
Mau, B., Newton, M. A., and Larget, B. 1999. Bayesian phylogenetic inference via Markov Chain Monte Carlo methods. Biometrics, 55:112.CrossRefGoogle ScholarPubMed
McLean, J. H. 1984. A case for derivation of the Fissurellidae from the Bellerophontacea. Malacologia, 25:320.Google Scholar
McLean, J. H., and Haszprunar, G. 1987. Pyropeludae, a new family of cocculiniform limpets from hydrothermal vents. Veliger, 30:196205.Google Scholar
Michaux, B. 1989. Cladograms can reconstruct phylogenies: an example from the fossil record. Alcheringa, 13:2136.CrossRefGoogle Scholar
Mikkelsen, P. M. 1996. The evolutionary relationships of Cephalaspidea s. 1. (Gastropoda: Opisthobranchia): a phylogenetic analysis. Malacologia, 37:375442.Google Scholar
Miller, D. J. 1999. Making the most of your shells: construction and microarchitectural characters in muricid gastropod systematics. Geological Society of America—Abstracts with Program, 31:A–42.Google Scholar
Morris, N. J. 1990. Early radiation of the Mollusca, p. 7390. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. Clarendon Press, Oxford.Google Scholar
Morris, N. J., and Cleevely, R. J. 1981. Phanerotinus cristatus (Phillips) and the nature of euomphalacean gastropods, Molluscans. Bulletin of the British Museum of Natural History (Geology), 35:195212.Google Scholar
Morris, P. J. 1991. Functional morphology and phylogeny: an assessment of monophyly in the Kingdom Animalia and Paleozoic nearlyplanispiral snail-like mollusks. Unpublished Ph.D. dissertation, Harvard University, 406 p.Google Scholar
Naef, A. 1913. Studien zur generaellen Morphologie der Mollusken. 1. Teil: über Torsion und Asymmetrie der Gastropoden. Ergebnisse und Fortschritte der Zoologie, 3:73164.Google Scholar
Nützel, A., and Bandel, K. 2000. Gonismidae and Orthonemidea: two new families of the Palaeozoic Caenogastropoda (Mollusca, Gastropoda). Neues Jahrbuch für Geologie und Paläontologie Mitthandelung, 2000:557569.CrossRefGoogle Scholar
Nützel, A., Erwin, D. H., and Mapes, R. H. 2000. Identity and phylogeny of the Late Paleozoic Subulitoidea (Gastropoda). Journal of Paleontology, 74:575598.2.0.CO;2>CrossRefGoogle Scholar
Palmer, A. R. 1985. Quantum changes in gastropod shell morphology need not reflect speciation. Evolution, 39:699705.CrossRefGoogle Scholar
Patterson, C. 1981. Significance of fossils in determining evolutionary relationships. Annual Review of Ecology and Evolution, 12:195223.CrossRefGoogle Scholar
Paul, C. R. C. 1982. The adequacy of the fossil record, p. 75117. In Joysey, K. A. and Friday, A. E. (eds.), Problems of Phylogenetic Reconstruction. Academic Press, London.Google Scholar
Peel, J. S. 1991. Salpingostoma and related bellerophontacean gastropods from Greenland and the Baltic region. Gr⊘nlands Geologiske Unders⊘gelse Bulletin, 161:67116.Google Scholar
Peel, J. S. 1993. Muscle scars and mode of life of Carinaropsis (Bellerophontoidea, Gastropoda) from the Ordovician of Tennessee. Journal of Paleontology, 67:528–523.CrossRefGoogle Scholar
Peel, J. S. 2001. Musculature and asymmetry in a Carboniferous pseudo-bellerophontoidean gastropod (Mollusca). Palaeontology, 44:157166.CrossRefGoogle Scholar
Pennington, J. T., and Chia, F. S. 1985. Gastropod torsion: a test of Gastrang's hypothesis. Biological Bulletin, 169:391396.CrossRefGoogle ScholarPubMed
Ponder, W. F. 1984. A review of the genera of the Iravadiidae (Gastropoda: Rissoacea) with an assessment of the relationships within the family. Malacologia, 25:2171.Google Scholar
Ponder, W. F., and Lindberg, D. R. 1996. Gastropod phylogeny—challenges for the 90s, p. 135154. In Taylor, J. (ed.), Origin and Evolutionary Radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Ponder, W. F., and Lindberg, D. R. 1997. Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zoological Journal of the Linnean Society, 119:83265.CrossRefGoogle Scholar
Reid, D. G. 1989. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philosophical Transactions of the Royal Society of London Series B, 324:1110.Google Scholar
Reid, D. G., Rumbak, E., and Thomas, R. H. 1996. DNA, morphology and fossils: phylogeny and evolutionary rates of the gastropod genus Littorina . Philosophical Transactions of the Royal Society of London Series B, 351:877895.Google ScholarPubMed
Ridgway, S. A., Reid, D. G., Taylor, J. D., Branch, G. M., and Hodgson, A. N. 1998. A cladistic phylogeny of the family Patellidae (Mollusca: Gastropoda). Philosophical Transactions of the Royal Society of London Series B, 353:16451671.CrossRefGoogle Scholar
Robertson, R. 1996. Fargoa bartschi (Winkley, 1909): a little known Atlantic and Gulf Coast odostomian (Pyramidellidae) and its generic relationships. American Malacological Bulletin, 13:1121.Google Scholar
Rosenberg, G., Kuncio, G. S., Davis, G. M., and Harasewych, M. G. 1994. Preliminary ribosomal RNA phylogeny of gastropod and unionoidean bivalve mollusks. Nautilus Supplement, 2:111121.Google Scholar
Roy, K. 1994. Effects of the Mesozoic Marine Revolution on the taxonomic, morphologic, and biogeographic evolution of a group: aporrhaid gastropods during the Mesozoic. Paleobiology, 20:274296.CrossRefGoogle Scholar
Runnegar, B. 1981. Muscle scars, shell form and torsion in Cambrian and Ordovician univalved molluscs. Lethaia, 14:311322.CrossRefGoogle Scholar
Runnegar, B. 1983. Molluscan phylogeny revisited. Memoirs of the Association of Australasian Palaeontologists, 1:121144.Google Scholar
Runnegar, B. 1996. Early evolution of the Mollusca: The fossil record, p. 7787. In Taylor, J. D. (ed.), Origin and Evolutionary Radiation of the Mollusca. Oxford University Press, Oxford.Google Scholar
Salvini-Plawen, L. v., and Haszprunar, G. 1987. The Vetigastropoda and the systematics of streptoneurous Gastropoda. Journal of Zoology, London (A), 211:747770.CrossRefGoogle Scholar
Schander, C., and Sundberg, P. 2001. Useful characters in gastropod phylogeny: Soft information or hard facts? Systematic Biology, 50:136141.Google ScholarPubMed
Schopf, K. M., and Morris, P. J. 1994. Description of a muscle scar and two other novel features from steinkerns of Hypomphalocirrus (Mollusca: Paragastropoda). Journal of Paleontology, 68:4758.CrossRefGoogle Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J., and Simberloff, D. S. 1975. Genomic versus morphologic rates of evolution: influence of morphologic complexity. Paleobiology, 1:6370.CrossRefGoogle Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology, 31:799828.Google Scholar
Smith, A. B. 1994. Systematics and the Fossil Record—Documenting Evolutionary Patterns. Blackwell Scientific Publications, Oxford, 223 p.CrossRefGoogle Scholar
Smith, A. B. 2000. Stratigraphy in phylogeny reconstruction. Journal of Paleontology, 74:763766.CrossRefGoogle Scholar
Sober, E. 1988. Reconstructing the Past. MIT Press, Cambridge, 265 p.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry (second edition). W. H. Freeman, New York, 859 p.Google Scholar
Stanley, S. M. 1982. Gastropod torsion: predation and opercular imperative. Neues Jahrbuch für Geologie und Paläontologie Abhandlugen, 164:95107.CrossRefGoogle Scholar
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology, 21:411427.CrossRefGoogle Scholar
Swofford, D. L. 2000. PAUP: Phylogenetic Analysis using Parsimony (and other methods), 4.0b4a. Sunderland, MA, Sinauer.Google Scholar
Thiele, J. 1929. Handbuch der Systematischen Weichtierkunde. Volume 1. Gustav Fischer Verlag, Jenna, 376 p.Google Scholar
Tracey, S., Todd, J. A., and Erwin, D. H. 1993. Mollusca: Gastropoda, p. 131167. In Benton, M. J. (ed.), The Fossil Record 2. Chapman and Hall, London.Google Scholar
Ulrich, E. O., and Scofield, W. H. 1897. The Lower Silurian Gastropoda of Minnesota. The Paleontology of Minnesota, 3:8131081.Google Scholar
Valentine, J. W. 1980. Determinants of diversity in higher taxonomic categories. Paleobiology, 6:444450.CrossRefGoogle Scholar
Valentine, J. W., and Campbell, C. A. 1975. Genetic regulation and the fossil record. The American Scientist, 63:673680.Google ScholarPubMed
van den Beggelaar, J. A. M., and Haszprunar, G. 1996. Cleavage patterns and mesentoblast formation in the Gastropoda: an evolutionary perspective. Evolution, 50:15201540.CrossRefGoogle Scholar
Vermeu, G. J., and Carlson, S. J. 2000. The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology, 26:1946.2.0.CO;2>CrossRefGoogle Scholar
Waddell, P. J., Cao, Y., Hasegawa, M., and Mindell, D. P. 1999. Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Systematic Biology, 48:119137.CrossRefGoogle Scholar
Wagner, P. J. 1995a. Stratigraphic tests of cladistic hypotheses. Paleobiology, 21:153178.CrossRefGoogle Scholar
Wagner, P. J. 1995b. Testing evolutionary constraint hypotheses with early Paleozoic gastropods. Paleobiology, 21:248272.CrossRefGoogle Scholar
Wagner, P. J. 1995c. Diversification among early Paleozoic gastropods—contrasting taxonomic and phylogenetic descriptions. Paleobiology, 21:410439.CrossRefGoogle Scholar
Wagner, P. J. 1998a. Anatomical disparity over time as inferred from modern gastropods: contrasting neontological and paleontological patterns, p. 348. In Bieler, R. and Mikkelsen, P. M. (eds.), Abstracts, World Congress of Malacology. Unitas Malacologia.Google Scholar
Wagner, P. J. 1998b. A likelihood approach for estimating phylogenetic relationships among fossil taxa. Paleobiology, 24:430449.CrossRefGoogle Scholar
Wagner, P. J. 1999a. Phylogenetics of Ordovician—Silurian Lophospiridae (Gastropoda: Murchisoniina): the importance of stratigraphic data. American Malacological Bulletin, 15:131.Google Scholar
Wagner, P. J. 1999b. Phylogenetics of the earliest anisostrophically coiled gastropods. Smithsonian Contributions to Paleobiology, 88:1152.Google Scholar
Wagner, P. J. 2000a. The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Systematic Biology, 49:6586.CrossRefGoogle Scholar
Wagner, P. J. 2000b. Phylogenetic analyses and the fossil record: tests and inferences, hypotheses and models, p. 341371. In Erwin, D. H. and Wing, S. L. (eds.), Deep Time—Paleobiology's Perspective. Paleobiology Memoir 26 (Suppl. to No. 4).CrossRefGoogle Scholar
Wagner, P. J. 2000c. Exhaustion of cladistic character states among fossil taxa. Evolution, 54:365386.CrossRefGoogle Scholar
Wagner, P. J. 2001. Rate heterogeneity in shell character evolution among lophospiroid gastropods. Paleobiology, 27:290310.2.0.CO;2>CrossRefGoogle Scholar
Wanninger, A., Ruthensteiner, B., and Haszprunar, G. 2000. Torsion in Patella caerulea (Mollusca, Patellogastropoda): ontogenetic process, timing, and mechanisms. Invertebrate Biology, 119:177187.CrossRefGoogle Scholar
Warén, A., and Bouchet, P. 1989. New gastropods from the east Pacific hydrothermal vents. Zoologica Scripta, 18:67102.CrossRefGoogle Scholar
Wenz, W. 1938. Gastropoda. Bonntraeger, Berlin, 240 p.Google Scholar
Wenz, W. 1940. Ursrung und frühe Stammesgeschichte der Gastropoden. Archivs für Moluskenkunde, 72:110.Google Scholar
Wise, J. B. 1996. Morphology and phylogenetic relationships of certain pyramidellid taxa (Heterobranchia). Malacologia, 37:443511.Google Scholar
Yang, Z., and Rannala, B. 1997. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Molecular Biology and Evolution, 14:717724.CrossRefGoogle ScholarPubMed
Yochelson, E. L. 1967. Quo vadis, Bellerophon?, p. 141161. In Teichert, C. and Yochelson, E. L. (eds.), Essays in Paleontology and Stratigraphy. University of Kansas Press, Lawrence.Google Scholar
Yochelson, E. L. 1978. An alternative approach to the interpretation of the phylogeny of ancient molluscs. Malacologia, 17:165191.Google Scholar
Yochelson, E. L. 1984. Historic and current considerations for revision of Paleozoic gastropod classification. Journal of Paleontology, 58:259269.Google Scholar
Yoder, A. D., and Yang, Z. 2000. Estimation of primate speciation dates using local molecular clocks. Molecular Biology and Evolution, 17:10811090.CrossRefGoogle ScholarPubMed