Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T06:12:10.409Z Has data issue: false hasContentIssue false

New Brontotheriidae (Mammalia, Perissodactyla) from the early and middle Eocene of Pakistan with implications for mammalian paleobiogeography

Published online by Cambridge University Press:  14 July 2015

Pieter Missiaen
Affiliation:
1Ghent University, Research Unit Palaeontology, Krijgslaan 281-S8, B-9000 Ghent, Belgium and Royal Belgian Institute of Natural Sciences (RBINS), Department of Paleontology, rue Vautier 29, B-1000 Brussels, Belgium, 2University of Michigan, Museum of Paleontology, Geddes Road 1109, Ann Arbor, MI 48109-1079, USA, ;
Gregg F. Gunnell
Affiliation:
2University of Michigan, Museum of Paleontology, Geddes Road 1109, Ann Arbor, MI 48109-1079, USA, ;
Philip D. Gingerich
Affiliation:
2University of Michigan, Museum of Paleontology, Geddes Road 1109, Ann Arbor, MI 48109-1079, USA, ;

Abstract

Brontotheriids are common in Eocene faunas of North America and Asia but are poorly known from the Indian subcontinent. Here we describe three new late early Eocene brontotheriids from Pakistan, found in the upper part of the upper Ghazij Formation and representing the oldest Asian brontotheres. Eotitanops pakistanensis n. sp. is a small, primitive species, Balochititanops haqi n. gen. n. sp. is slightly larger and more derived, and fragmentary specimens identified as cf. Balochititanops sp. appear to represent a third, larger taxon.

Improved knowledge of early brontotheres from North America permits better taxonomic resolution of some middle Eocene brontothere remains from Pakistan. ‘Eotitanops’ dayi from the Kuldana Formation is shown to be closer to Palaeosyops and is renamed Palaeosyops dayi n. comb. A new astragalus from the Baska Formation probably represents Pakotitanops latidentatus. A previously described humerus and a new calcaneum, both from the Subathu Formation, are tentatively referred to Mulkrajanops moghliensis.

Phylogenetic interpretation suggests that Eotitanops pakistanensis is as primitive as the North American species of this basal brontothere genus, and also, within the limits of stratigraphic resolution, Eotitanops appeared on both continents at the same time. The origin of brontotheres is therefore equally likely to have been in Asia or in North America. The presence of the primitive brontotheres Eotitanops and Palaeosyops in Indo-Pakistan and North America indicates faunal exchange, almost certainly through Asia, although the direction of dispersal cannot be determined. The postulated high-latitude exchange coincides with a warm interval known as the Early Eocene Climatic Optimum.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzal, J. 1996. Late Cretaceous to early Eocene foraminiferal biostratigraphy of the Rakhi Nala area, Sulaiman Range, Pakistan. Pakistan Journal of Hydrocarbon Research, Islamabad, 8:124.Google Scholar
Beard, K. C. 1998. East of Eden: Asia as an important center of taxonomic origination in mammalian evolution, p. 539. In Beard, K. C. and Dawson, M. R. (eds.), Dawn of the Age of Mammals in Asia. Bulletin of the Carnegie Museum of Natural History, 34.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C., and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy, p. 129212. In Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J. A. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlations: A Unified Temporal Framework for an Historical Geology. Society of Economic Paleontologists and Mineralogistst Special Vol. 54.Google Scholar
Berggren, W. A. and Pearson, P. N. 2005. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. Journal of Foraminiferal Research, 35:279298.Google Scholar
Böckh, J. 1876. Brachydiastematherium transylvanicum Böckh et Maty, ein Neues Pachydermen-Genus aus den eocänen Schichten Siebenburgens. Mitteilungen aus dem Jahrbuche der Königlichen Ungarischen Geologischen Anstalt, 4:121150.Google Scholar
Clyde, W. C. Bartels, W. S., Gunnell, G. F. and Zonneveld, J.-P. 2004. 40Ar/39 Ar geochronology of the Eocene Green River Formation, Wyoming. Geological Society of America Bulletin, 116:251252.Google Scholar
Clyde, W. C., Khan, I. H., and Gingerich, P. D. 2003. Stratigraphic response and mammalian dispersal during initial India-Asia collision: evidence from the Ghazij Formation, Balochistan, Pakistan. Geology, 31:10971100.Google Scholar
Clyde, W. C., Sheldon, N. D., Koch, P. L., Gunnell, G. F., and Bartels, W. S. 2001. Linking the Wasatchian/Bridgerian boundary to the Cenozoic global climate optimum: new magnetostratigraphic and isotopic results from South Pass, Wyoming. Palaeogeography, Palaeoclimatology, Palaeoecology, 167:175199.Google Scholar
Cope, E. D. 1873. On the new Perissodactyla from the Bridger Eocene. Paleontological Bulletin, 11:12.Google Scholar
Cope, E. D. 1880. The bad lands of the Wind River and their fauna. American Naturalist, 14:745748.Google Scholar
Dehm, R. and Oettingen-Spielberg, T. Z. 1958. Die mitteleocanen Saugertiers von Ganda Kas bei Basal in Nordwest Pakistan. Bayerische Akademie der Wissenschaften, New Series, 91:154.Google Scholar
Eberle, J. J. 2006. Early Eocene Brontotheriidae (Perissodactyla) from the Eureka Sound group, Ellesmere Island, Canadian High Arctic—implications for brontothere origins and high latitude dispersal. Journal of Vertebrate Paleontology, 26:381386.Google Scholar
Emry, R. J., Lucas, S. G., Tyutkova, L., and Wang, B. 1998. The Ergilian-Shandgolian (Eocene-Oligocene) transition in the Zaysan Basin, Kazakstan, p. 298312. In Beard, K. C. and Dawson, M. R. (eds.), Dawn of the Age of Mammals in Asia. Bulletin of the Carnegie Museum of Natural History 34.Google Scholar
Fritz, E. B. and Khan, M. 1975. Stratigraphy and paleontology of coal beds in the Ghazij Shale, Sor Range-Daghari coal field, Quetta Division, Pakistan. Project report PK-15. U.S. Geological Survey Open File Report, 75-274:116.Google Scholar
Gabounia, L. 1977. Contribution à la connaissance des mammifères paléogènes du bassin de Zaissan (Kazakhstan Central). Geobios mémoire special, 1:2937.Google Scholar
Gingerich, P. D. 2003. Stratigraphic and micropaleontological constraints on the Middle Eocene age of the mammal-bearing Kuldana Formation of Pakistan. Journal of Vertebrate Paleontology, 23:643651.Google Scholar
Gingerich, P. D., Abbas, S. G., and Arif, M. 1997. Early Eocene Quettacyon parachai (Condylarthra) from the Ghazij Formation of Baluchistan (Pakistan): oldest Cenozoic land-mammal from South Asia. Journal of Vertebrate Paleontology, 17:629637.Google Scholar
Gingerich, P. D., Arif, M., Khan, I. H., Ul-Haq, M., Bloch, J. I., Clyde, W. C., and Gunnell, G. F. 2001. Gandhera Quarry, a unique mammalian faunal assemblage from the early Eocene of Baluchistan (Pakistan), p. 251262. In Gunnell, G. F. (ed.), Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats. Kluwer Academic/Plenum Publishers, New York.Google Scholar
Gingerich, P. D. and Russell, D. E. 1994. Unusual mammalian limb bones (Cetacea?, Archaeoceti?) from the Early-to-Middle Eocene Subathu Formation of Kashmir (Pakistan). Contributions from the Museum of Paleontology, University of Michigan, 29:109117.Google Scholar
Granger, W. and Gregory, W. K. 1943. A revision of the Mongolian titanotheres. Bulletin of the American Museum of Natural History, 80:349389.Google Scholar
Gunnell, G. F., Gingerich, P. D., Ul-Haq, M., Bloch, J. I., Khan, I. H., and Clyde, W. C. 2008. New euprimates (Mammalia) from the early and middle Eocene of Pakistan. Contributions from the Museum of Paleontology, The University of Michigan, 32:114.Google Scholar
Gunnell, G. F., Murphey, P. C., Stucky, R. K., Townsend, K. E. B., Robinson, P., Zonneveld, J.-P., and Bartels, W. S. 2009. Biostratigraphy and biochronology of the latest Wasatchian, Bridgerian, and Uintan North American Land Mammal “Ages,” p. 279330. In Albright, L. B. III (ed.), Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne. Museum of Northern Arizona Bulletin 65.Google Scholar
Gunnell, G. F. and Yarborough, V. L. 2000. Brontotheriidae (Perissodactyla) from the late early Eocene (Bridgerian), Wasatch and Bridger formations, southern Green River Basins, southwestern Wyoming. Journal of Vertebrate Paleontology, 20:349368.Google Scholar
Holbrook, L. T. 2009. Osteology of Lophiodon Cuvier, 1822 (Mammalia, Perissodactyla) and its phylogenetic implications. Journal of Vertebrate Paleontology, 29:212230.Google Scholar
Holroyd, P. A. and Ciochon, R. L. 2000. Bunobrontops savagei: a new genus and species of brontotheriid perissodactyl from the Eocene Pondaung fauna of Myanmar. Journal of Vertebrate Paleontology, 20:408410.Google Scholar
Jones, A. G., Manistre, B. E., Oliver, R. L., Willson, G. S., and Scott, H. S. 1958. Reconnaissance Geology of Part of West Pakistan (Colombo Plan co-operative project conducted and compiled by Hunting Survey Corporation). Geological Map no. 27: Loralai, 1:253,440. Government of Canada, Toronto, 550 p.Google Scholar
Kumar, K. and Sahni, A. 1985. Eocene mammals from the upper Subathu group, Kashmir Himalaya, India. Journal of Vertebrate Paleontology, 5:153168.Google Scholar
Leidy, J. 1870. Descriptions of Palaeosyops paludosus, Microsus cuspidatus, and Notharctus tenebrosus . Proceedings of the Academy of Natural Sciences of Philadelphia, 22:113114.Google Scholar
Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis (editio decima, reformata). Laurenti Salvii, Stockholm, 824 p.Google Scholar
Lucas, S. G. and Schoch, R. M. 1989. European brontotheres, p. 485489. In Prothero, D. R. and Schoch, R. M. (eds.), The Evolution of Perissodactyls. Oxford University Press, New York.Google Scholar
Luterbacher, H., Ali, J. R., Brinkhuis, H., Gradstein, F. M., Hooker, J. J., Monechi, S., Ogg, J. G., Powell, J., Röhl, U., Sanfilippo, A., and Schmitz, B. 2004. The Paleogene Period, p. 384408. In Gradstein, F. M., Ogg, J. G., and Smith, A. G. (eds.), A Geological Time Scale 2004. Cambridge University Press, Cambridge.Google Scholar
Mader, B. J. 1998. Brontotheriidae, p. 525536. In Janis, C. M., Scott, K. M., and Jacobs, L. L. (eds.), Evolution of Tertiary Mammals of North America: Vol. I: Terrestrial Carnivores, Ungulates, and Ungulate-Like Mammals. Cambridge University Press, Cambridge.Google Scholar
Mader, B. J. 2010. A species-level revision of the North American brontotheres Eotitanops and Palaeosyops (Mammalia, Perissodactyla). Zootaxa, number 2339, 43 p.Google Scholar
Marsh, O. C. 1872. Preliminary description of new Tertiary mammals. American Journal of Science and Arts, 4:135.Google Scholar
Marsh, O. C. 1873. Notice of new Tertiary mammals. American Journal of Science and Arts, 5:19.Google Scholar
Mihlbachler, M. C. 2008. Species taxonomy, phylogeny, and biogeography of the Brontotheriidae (Mammalia: Perissodactyla). Bulletin of the American Museum of Natural History, 311:1475.Google Scholar
Missiaen, P. 2011. An updated mammalian biochronology and biogeography for the early Paleogene of Asia. Vertebrata Palasiatica, 49:2952.Google Scholar
Miyata, K. and Tomida, Y. 2003. First discovery of brontotheres from the Eocene of Japan. Journal of Vertebrate Paleontology, 23(suppl.):79A.Google Scholar
Osborn, H. F. 1907. Tertiary mammal horizons of North America. Bulletin of the American Museum of Natural History, 23:237253.Google Scholar
Osborn, H. F. 1908. New or little known titanotheres from the Eocene and Oligocene. Bulletin of the American Museum of Natural History, 24:599617.Google Scholar
Osborn, H. F. 1919. New titanotheres of the Huerfano. Bulletin of the American Museum of Natural History, 41:557569.Google Scholar
Osborn, H. F. 1929. Titanotheres of ancient Wyoming, Dakota, and Nebraska. U.S. Geological Survey Monographs, 55:1894.Google Scholar
Owen, R. 1848. Description of teeth and portions of jaws of two extinct anthracotherioid quadrupeds (Hyopotamus vectianus and Hyop. bovinus) discovered by the Marchioness of Hastings in the Eocene deposits on the N.W. coast of the Isle of Wight: with an attempt to develop Cuvier's idea of the classification of pachyderms by the number of their toes. Quarterly Journal of the Geological Society of London, 4:103141.Google Scholar
Qi, T. and Beard, K. C. 1996. Nanotitan shanghuangensis, gen. et sp. nov.: the smallest known brontothere. Journal of Vertebrate Paleontology, 16:578581.Google Scholar
Radinksy, L. B. 1965. Evolution of the tapiroid skeleton from Heptodon to Tapirus . Bulletin of the Museum of Comparative Zoology, 134:69106.Google Scholar
Rana, R. S., Kumar, K., Escarguel, G., Sahni, A., Rose, K. D., Smith, T., Singh, H., and Singh, L. 2008. An ailuravine rodent from the lower Eocene Cambay Formation at Vastan, western India, and its palaeobiogeographic implications. Acta Palaeontologica Polonica, 53:114.Google Scholar
Rose, K. D., Deleon, V. B., Missiaen, P., Rana, R. S., Sahni, A., Singh, L., and Smith, T. 2008. Early Eocene lagomorph (Mammalia) from western India and the early diversification of Lagomorpha. Proceedings of the Royal Society of London B, 275:12031208.Google ScholarPubMed
Rose, K. D., Rana, R. S., Sahni, A., Kumar, K., Singh, L. and Smith, T. 2009. First tillodont from India: Additional evidence for an early Eocene faunal connection between Europe and India? Acta Palaeontologica Polonica, 54:351355.Google Scholar
Russell, D. E. and Zhai, R. 1987. The Paleogene of Asia: mammals and stratigraphy. Memoires du Museum National D'Histoire Naturelle Serie C, Sciences de la Terre, 52:1488.Google Scholar
Smith, K. T. and Holroyd, P. A. 2003. Rare taxa, Biostratigraphy and the Wasatchian-Bridgerian Boundary in North America, p. 501511. In Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E. (eds.), Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America Special Paper 369.Google Scholar
Smith, M. E., Singer, B. S., and Carroll, A. R. 2003. 40Ar/39Ar geochronology of the Green River Formation, Wyoming: Geological Society of America Bulletin, 115:549565.Google Scholar
Smith, M. E., Singer, B. S., and Carroll, A. R. 2004. 40Ar/39Ar geochronology of the Eocene Green River Formation, Wyoming. Geological Society of America Bulletin, 116:253256.Google Scholar
Smith, T., Rana, R. S., Missiaen, P., Rose, K. D., Sahni, A., Singh, H., and Singh, L. 2007. Highest diversity of earliest bats in the Early Eocene of India. Naturwissenschaften, 94:10031009.Google Scholar
Thewissen, J. G. M., Gingerich, P. D., and Russell, D. E. 1987. Artiodactyla and Perissodactyla (Mammalia) from the Early-Middle Eocene Kuldana Formation of Kohat (Pakistan). Contributions from the Museum of Paleontology, University of Michigan, 27:247274.Google Scholar
Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, Massachusetts.Google Scholar
Ting, S. 1998. Paleocene and early Eocene Land Mammal Ages of Asia, p. 124147. In Beard, K. C. and Dawson, M. R. (eds.), Dawn of the Age of Mammals in Asia. Bulletin of the Carnegie Museum of Natural History 34.Google Scholar
West, R. M. 1980. Middle Eocene large mammal assemblage with Tethyan affinities, Ganda Kas region, Pakistan. Journal of Paleontology, 54:508533.Google Scholar
Woodburne, M. O., Gunnell, G. F., and Stucky, R. K. 2009. Climate directly influences Eocene mammal faunal dynamics in North America. Proceedings of the National Academy of Sciences, U.S.A., 106:1339913403.Google Scholar