Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-02T21:50:59.999Z Has data issue: false hasContentIssue false

Ultraviolet laser-induced liquid-phase palladium seeding on polymers

Published online by Cambridge University Press:  31 January 2011

K. Kordás
Affiliation:
Department of Experimental Physics, József Atilla University H-6720 Szeged, Dóm tér 9, Hungary
J. Békési
Affiliation:
Department of Experimental Physics, József Atilla University H-6720 Szeged, Dóm tér 9, Hungary
K. Bali
Affiliation:
Department of Experimental Physics, József Atilla University H-6720 Szeged, Dóm tér 9, Hungary
R. Vajtai
Affiliation:
Department of Experimental Physics, József Atilla University H-6720 Szeged, Dóm tér 9, Hungary
L. Nánai
Affiliation:
Department of Experimental Physics, József Atilla University H-6720 Szeged, Dóm tér 9, Hungary
Thomas F. George
Affiliation:
Office of the Chancellor/Departments of Chemistry and Physics & Astronomy, University of Wisconsin—Stevens Point, Stevens Point, Wisconsin 54481–3897
S. Leppävuori
Affiliation:
Microelectronics and Material Physics Laboratories, University of Oulu, SF-90570 Oulu, Finland
Get access

Abstract

Excimer laser pulses with wavelength of 308 nm, repetition rates of 1–10 Hz, pulse energies of 300–400 mJ, and pulse width of 20 ns are used to selectively seed palladium aggregates from a liquid-phase solution on polymer (polyimide) surfaces. The precursors used are PdCl2 in hydrochloric acid and Pd(CH3CO2)2 in acetic acid. The coverage of the polyimide with palladium aggregates is determined by the analysis of scanning electron microscopy measurements. Qualitative and quantitative analyses of seeded particles on polyimide (PI) are investigated by x-ray diffraction and transmission measurements. The amount of deposited palladium showed a quadratic dependence on the laser fluence reaching the surface. On the other hand, the coverage versus number of laser shots shows a square-root-like dependence. The palladium deposits also appear as amorphous and Pd[111] crystallites forms depending on the number of laser pulses. The roughness of a PI surface prior to seeding is modified mechanically and characterized by its fractal dimension. The fractal dimension of the samples varies between 2.3 and 2.7 for all the parameters applied, and the palladium deposition is found to be dependent on this dimension of the PI film.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ehrlich, D. and Tsao, J.Y., VLSI Electronics: Microstructure Science (Academic Press, New York, 1983), Vol. 7.Google Scholar
2.Nánai, L., Hevesi, I., Bunkin, F.V., Luk'yanchuk, B.S., Brook, M.K., and Shafeev, G.A., in Proceedings of the Third International Symposium on Modern Optics (Budapest, 1988), Vol. 2, pp. 469472.Google Scholar
3.Lu, Y-F., Takai, M., Nakata, T., Nagatomo, S., and Namba, S., Appl. Phys. A 52, 129 (1991).CrossRefGoogle Scholar
4.Lu, Y-F., Huang, S.M., Wang, X.B., and Shen, Z.X., Appl. Phys. A 66, 543 (1998).CrossRefGoogle Scholar
5.Heszler, P., Carlsson, J.O., and Mogyorósi, P., J. Vac. Sci. Technol., A 11, 2924 (1993).CrossRefGoogle Scholar
6.Bali, K., Geretovszky, Zs., Tóth, A.L., and Szörényi, T., Appl. Surf. Sci. 69, 326 (1993).CrossRefGoogle Scholar
7.Bohandy, J., Kim, B.F., and Adrian, F.J., J. Appl. Phys. 60, 1538 (1986).CrossRefGoogle Scholar
8.Tóth, Z., Szörényi, T., and Tóth, A.L., Appl. Surf. Sci. 69, 317 (1993).CrossRefGoogle Scholar
9.Moilanen, H., Remes, J., and Leppävuori, S., Phys. Scr. T69, 237 (1997).CrossRefGoogle Scholar
10.Schrott, A.G., Braren, B., O'Sullivan, E.J.M., Saraf, R.F., Bailey, P., and Roldan, J., J. Electrochem. Soc. 142, 944 (1995).CrossRefGoogle Scholar
11.Mishra, K.G. and Paramguru, R.K., J. Electrochem. Soc. 143, 510 (1996).CrossRefGoogle Scholar
12.Bindra, P. and Roldan, J., J. Electrochem. Soc. 132, 2581 (1985).CrossRefGoogle Scholar
13.Esrom, H., Zhang, J-Y., Kogelschatz, U., and Pedraza, A.J., Appl. Surf. Sci. 86, 202 (1995).CrossRefGoogle Scholar
14.Niino, H. and Yabe, A., Appl. Phys. Lett. 60, 2697 (1992).CrossRefGoogle Scholar
15.Hirsch, T.J., Miracky, R.F., and Lin, C., Appl. Phys. Lett. 57, 1357 (1990).CrossRefGoogle Scholar
16.Almquist, N., Surf. Sci. 355, 221 (1996).CrossRefGoogle Scholar
17.Ehrenreich, H. and Turnbull, D., Solid State Physics (Academic Press, New York, 1986), Vol. 39, pp. 219227.Google Scholar
18.Gómez-Rodriguez, J.M., Baró, A.M., Vázquez, L., Salvarezza, R.C., Varam, J.M., and Arvia, A.J., J. Phys. Chem. 96, 347 (1992).CrossRefGoogle Scholar
19.Beleznai, Cs., Vajtai, R. and Nánai, L., Fractals 5, 275 (1997).CrossRefGoogle Scholar
20.Békési, J., Kordás, K., Beleznai, Cs., Bali, K., Vajtai, R., and Nánai, L., Appl. Surf. Sci. 138–139, 614 (1999).Google Scholar
21.Russ, J.C. and Russ, J.C., in Microbeam Analysis (San Francisco Press, 1986), p. 509.Google Scholar
22.Russ, J.C. and Russ, J.C., Proceedings of EMSA (San Francisco Press, 1987), pp. 540543.Google Scholar
23.Russ, J.C., Computer-Assisted Microscopy (Plenum Press, New York, 1990), pp. 331343.CrossRefGoogle Scholar
24.Karrer, P., Lehrbuch der Organischen Chemie (Georg Thieme, Leipzig, 1950), Vol. 4, pp. 91135.Google Scholar
25.McMurry, J., Fundamentals of Organic Chemistry, 3rd ed. (Brooks/Cole Publishing Co. Pacific Grove, California, 1994).Google Scholar
26.Xomeritakis, G. and Lin, Y-S., AIChE J. 44, 174 (1998).CrossRefGoogle Scholar
27.Yan, S., Maeda, H., Kusakabe, K., and Morooka, S., Ind. Eng. Chem. Res. 33, 616 (1994).CrossRefGoogle Scholar