Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T23:39:38.974Z Has data issue: false hasContentIssue false

TEM study of the structure and chemistry of a diamond/silicon interface

Published online by Cambridge University Press:  03 March 2011

Y. Tzou
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501
J. Bruley
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestraβe 92, 70174 Stuttgart, Germany
F. Ernst
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestraβe 92, 70174 Stuttgart, Germany
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestraβe 92, 70174 Stuttgart, Germany
R. Raj
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501
Get access

Abstract

The interface between diamond and silicon, fabricated by growing diamond films on (001) silicon by microwave plasma assisted chemical vapor deposition (MPACVD), was characterized by high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS). Two types of interface morphology were identified. Type A interfaces contain an amorphous transition layer composed of silicon, carbon, and oxygen; the diamond overgrowth on this layer consists of nanocrystalline grains with random orientations. Type B interfaces consist of large diamond grains having special orientations with respect to the silicon substrate, without an obvious presence of a glassy phase and with a much lower oxygen content than type A interfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982).CrossRefGoogle Scholar
2Strecker, A., Salzberger, U., and Mayer, J., Praktische Metallografie 30, 482 (1993).Google Scholar
3Spence, J. C. H., Experimental High-Resolution Electron Microscopy (Oxford University Press, New York, 1988), 2nd ed.Google Scholar
4Johansson, S. and Schweitz, J. A., J. Am. Ceram. Soc. 71, 617 (1988).CrossRefGoogle Scholar
5Skiff, W. M., Carpenter, R. W., and Lin, S. H., J. Appl. Phys. 62, 2439 (1987).CrossRefGoogle Scholar
6McKenzie, D.R., Berger, S. D., and Brown, L. M., Solid State Coramun. 59, 325 (1986).CrossRefGoogle Scholar
7McKenzie, D.R., Bruley, J., and Smith, G. B., Appl. Phys. Lett. 53, 2284 (1988).CrossRefGoogle Scholar
8Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaendo, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
9Narayan, J., Srivatsa, A. R., Peters, M., Yokota, S., and Ravi, K. V., Appl. Phys. Lett. 53, 1823 (1988).CrossRefGoogle Scholar