Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T00:56:27.807Z Has data issue: false hasContentIssue false

TEM lattice imaging of the nanostructure of early-growth sputter-deposited MoS2 solid lubricant films

Published online by Cambridge University Press:  31 January 2011

M. R. Hilton
Affiliation:
Chemistry and Physics Laboratory, The Aerospace Corporation, El Segundo, California 90245
P. D. Fleischauer
Affiliation:
Chemistry and Physics Laboratory, The Aerospace Corporation, El Segundo, California 90245
Get access

Abstract

Transmission electron microscopy (TEM) was used to investigate the nanostructure of sputter-deposited MoS2 films; these films represent the early stages of growth under deposition conditions that produce a zone 2 columnar morphology. Analysis reveals that the early-growth film morphology consists of anisotropic (plate-like) islands in which the (001) basal planes are generally perpendicular to the substrate (forming “edge islands”) or parallel to the substrate (forming “basal islands”). Within the context of an active-sites nucleation model, localized regions of the substrate surface can lack the active sites needed to induce edge orientation. The edge islands evolve into the zone 2 morphology, shadowing and inhibiting the continued growth of the basal islands. Basal plane (002) lattice image curvature and kinking were observed in the edge islands. Dark-field analysis showed intensity variations within the edge islands. The edge island plates appear to be imperfect crystals of aligned basal planes. These crystals can bend, kink, or twist, apparently because of variations in local growth conditions. The ability of crystal growth to deviate has implications for the morphological evolution of thicker films. The ability of the MoS2 crystal lattice to bend supports the idea that localized deviation can occur during sliding wear.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gardos, M.N.,Lubr. Eng. 32, 463 (1976).Google Scholar
2Cristy, R.I., Thin Solid Films 73, 299 (1980).CrossRefGoogle Scholar
3Stupp, B. C., Thin Solid Films 84, 257 (1981).CrossRefGoogle Scholar
4Niederhauser, P., Hintermann, H. E., and Maillat, M., Thin Solid Films 108, 209 (1983).CrossRefGoogle Scholar
5Stupp, B. C., Proc. 3rd Int. Conf. on Solid Lubrication, Denver, CO (American Society of Lubrication Engineers, Park Ridge, IL, 1984), SP-14, p. 217.Google Scholar
6Spalvins, T., ASLE Trans. 14, 267 (1971).CrossRefGoogle Scholar
7Spalvins, T., ASLE Trans. 17, 1 (1973).CrossRefGoogle Scholar
8Nishimura, M., Nosaka, M., Suzuki, M., and Miyakawa, Y., Proc. 2nd ASLE Int. Conf. on Solid Lubrication, Denver, CO, ASLE SP-6, 128 (1978).Google Scholar
9Spalvins, T., Thin Solid Films 73, 291 (1980).CrossRefGoogle Scholar
10Spalvins, T., Thin Solid Films 96, 17 (1982).CrossRefGoogle Scholar
11Buck, V., Wear 91, 281 (1983).CrossRefGoogle Scholar
12Fleischauer, P. D., ASLE Trans. 27, 82 (1984).CrossRefGoogle Scholar
13Spalvins, T., Proc. 3rd Int. Conf. on Solid Lubrication, Denver, CO (American Society of Lubrication Engineers, Park Ridge, IL, 1984), SP-14, p. 401.Google Scholar
14Bichsel, R., Buffat, P., and Levy, F., J. Phys. D: Appl. Phys. 19, 1575 (1986).CrossRefGoogle Scholar
15Buck, V., Thin Solid Films 139, 157 (1986).CrossRefGoogle Scholar
16Buck, V., Vacuum 36, 89(1986).CrossRefGoogle Scholar
17Roberts, E.W., 20th American Mechanisms Symp. (NASA Lewis Res. Ctr., Cleveland, OH, May 1986), p. 103.Google Scholar
18Roberts, E.W., Proc. Inst. Mech. Eng., Tribology—Friction, Lubri-cation, and Wear, Fifty Years On (London, July 1987), Vol. I, p. 503.Google Scholar
19Panitz, J. K.G., Pope, L.E., Hills, C.R., Lyons, J.E., and Staley, D.J., Thin Solid Films 154, 323 (1987).CrossRefGoogle Scholar
20Lince, J. R. and Fleischauer, P. D., J. Mater. Res. 2 (6), 827 (1987).CrossRefGoogle Scholar
21Mikkelson, N. J., Chevallier, J., and Sorenson, G., Appl. Phys. Lett. 52, 1130 (1988).CrossRefGoogle Scholar
22Fleischauer, P. D. and Bauer, R., Tribology Transactions 31, 239 (1988).CrossRefGoogle Scholar
23Müller, C., Menoud, C., Maillat, M., and Hintermann, H. E., Surface Coatings and Technol. 36, 351 (1988).CrossRefGoogle Scholar
24Hilton, M. R. and Fleischauer, P. D., Mater. Res. Soc. Symp. Proc. 140, 227 (1989).CrossRefGoogle Scholar
25Gribi, P., Sun, Z.W., and Levy, F., J. Appl. Phys. D: Appl. Phys. 22, L238 (1989).CrossRefGoogle Scholar
26aThornton, J. A., Ann. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
26bThornton, J. A., J. Vac. Sci. & Technol. A 4 (6), 3059 (1986).CrossRefGoogle Scholar
27Movchan, B. A. and Demchishin, A.V., Phys. Met. Metallogr. 28, 83 (1969).Google Scholar
28Bertrand, P. A., J. Mater. Res. 4 (1), 180 (1989).CrossRefGoogle Scholar
29Didziulis, S.V. and Fleischauer, P. D., Langmuir (in press).Google Scholar
30Matsunaga, M. and Nakagawa, T., Proc. 2nd ASLE Int. Conf. on Solid Lubrication, Denver, CO, ASLE SP-6, 45 (1978).Google Scholar
31Lavik, M.T. and Campbell, M.E., ASLE Trans. 233 (19711972).Google Scholar
32Shaw, G. G. and Lavik, M.T., Proc. Electron Micros. Soc. Amer. 30,626 (1972).CrossRefGoogle Scholar
33Bertrand, P. A., Langmuir (in press).Google Scholar
34Lince, J. R., J. Mater. Res. 5 (1), 218 (1990).CrossRefGoogle Scholar
35Fleischauer, P.D., Thin Solid Films 154, 309 (1987).CrossRefGoogle Scholar
36Fleischauer, P. D., Lince, J.R., Bertrand, P. A., and Bauer, R., Langmuir, 5 1009 (1989).CrossRefGoogle Scholar
37Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley, 1978), p. 284.Google Scholar
38Thomas, G. and Goringe, M. J., Transmission Electron Microscopy of Materials (Wiley-Interscience, 1979), p. 191.Google Scholar
39Edington, J.W., Practical Electron Microscopy in Materials Science, Monograph 3: Interpretation of Transmission Electron Micrographs (MacMillan Technical Library, 1975), p. 75.CrossRefGoogle Scholar
40Spence, J. C. H., Experimental High-Resolution Electron Microscopy (Clarendon Press, Oxford, 1981).CrossRefGoogle Scholar
41Thompson-Russell, K. C. and Edington, J.W., Practical Electron Microscopy in Materials Science, Monograph 5: Electron Microscope Specimen Preparation Techniques in Materials Science (MacMillan Technical Library, 1977), p. 21.CrossRefGoogle Scholar
42Veblen, D.R. and Buseck, P.R., Science 206, 1398 (1979).CrossRefGoogle Scholar
43Sanders, J.V., Chemica Scripta 79 (14), 141 (1978).Google Scholar
44Sorensen, O., Clausen, B. S., Candia, R., and Topsoe, H., Applied Catalysis 13, 363 (1985).CrossRefGoogle Scholar
45Delannay, F., Applied Catalysis 13, 363 (1985).Google Scholar
46Takahashi, N., Wear 124, 279289 (1988).CrossRefGoogle Scholar
47Jones, J. R. and Hoover, G.W., ASLE Trans. 14, 55 (1971).CrossRefGoogle Scholar
48Gardos, M. N., Tribology Trans. 31 (2), 214 (1988).CrossRefGoogle Scholar
49JANAF Thermochemical Tables, 2nd ed. (National Bureau of Standards, Washington, DC, June 1971).Google Scholar
50Powder Diffraction File (JCPDS International Center for Diffraction Data, Swarthmore, PA, 1983).Google Scholar