Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T13:41:50.875Z Has data issue: false hasContentIssue false

Synthesis of amorphous boron nitride from the molecular precursor ammonia-monochloroborane

Published online by Cambridge University Press:  31 January 2011

Douglas R. Ketchum
Affiliation:
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
Allison L. DeGraffenreid
Affiliation:
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
Philipp M. Niedenzu
Affiliation:
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
Sheldon G. Shore*
Affiliation:
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
*
a)Address all correspondence to this author.
Get access

Abstract

Ammonia-monochloroborane, NH3BH2Cl, has been synthesized from the reaction of ammonia-borane with HCl in Et2O. Decomposition of the solid under NH3 to 600 °C produced amorphous BN in 97% yield. The 11B magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectrum of the amorphous BN is indicative of boron in the same environment as in hexagonal BN. Subsequent pyrolysis of the amorphous BN to 1000 °C produced turbostratic BN. Pyrolysis of NH3BH2Cl under vacuum to 1100 °C led to the formation of turbostratic BN as confirmed by x-ray diffraction (XRD) analysis. Gas evolution during this pyrolysis confirmed that the precursor loses H2 and HCl.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Balmain, W.H., J. Prakt. Chem. 27, 442 (1842).CrossRefGoogle Scholar
2.Meller, A., Gmelin Handbuch Anorg. Chem., Boron Compounds, 2nd Suppl. 1, 304 (1983).Google Scholar
3.Meller, A., Gmelin Handbuch Anorg. Chem., Boron Compounds, 3rd Suppl. 3, 1 (1988).Google Scholar
4.Meller, A., Gmelin Handbuch Anorg. Chem., Boron Compounds, 4th Suppl. 3a, 1 (1991).Google Scholar
5.Lipp, A., Schwetz, K. A., and Hunold, K., J. Eur. Chem. Soc. 5, 3 (1989).Google Scholar
6.Paine, R.T. and Narula, C. K., Chem. Rev., 73 (1990).Google Scholar
7.O'Connor, T.E., J. Am. Chem. Soc. 84, 1753 (1962).CrossRefGoogle Scholar
8.Economy, J. and Anderson, R., Inorg. Chem. 5, 989 (1966).CrossRefGoogle Scholar
9.Wang, J. S. and Geanangel, R.A., Inorg. Chim. Acta 148, 185 (1988).CrossRefGoogle Scholar
10.Hu, M.G., Geanangel, R. A., and Wendlandt, W.W., Thermochim. Acta 23, 249 (1978).CrossRefGoogle Scholar
11.Sit, V., Geanangel, R.A., and Wendlandt, W. W., Thermochim. Acta 113, 379 (1987).CrossRefGoogle Scholar
12.Komm, R., Geanangel, R. A., and Liepins, R., Inorg. Chem. 22, 1684 (1983).CrossRefGoogle Scholar
13.Beck, J. S., Albani, C. R., McGhie, A. R., Rothman, J. B., and Sneddon, L. G., Chem. Mater. 1, 433 (1989).CrossRefGoogle Scholar
14.Hu, M. G. and Geanangel, R. A., Inorg. Chem. 18, 3297 (1979).CrossRefGoogle Scholar
15.Shore, S. G., Niedenzu, P. M., and DeGraffenreid, A. L., U.S. Patent No. 5,169, 613.Google Scholar
16.DeGraffenreid, A. L., Ph.D. Dissertation, The Ohio State University, 1995.Google Scholar
17.Moulder, J. F., Stickle, W.F., Sobol, P. E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992).Google Scholar
18.Marchetti, P.S., Kwon, D., Schmidt, W.R., Interrante, L. V., and Maciel, G.E., Chem. Mater. 3, 482 (1991).CrossRefGoogle Scholar