Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T11:48:50.424Z Has data issue: false hasContentIssue false

Programmed substrate temperature ramping to increase nucleation density and decrease surface roughness during metalorganic chemical vapor deposition of aluminum

Published online by Cambridge University Press:  31 January 2011

R. Jonnalagadda
Affiliation:
Allied Signal Inc., 3520 Westmoor Street, South Bend, Indiana 46628–1373
D. Yang
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
B. R. Rogers
Affiliation:
Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235
J. T. Hillman
Affiliation:
Tokyo Electron Arizona, 2120 West Guadalupe Road, Gilbert, Arizona 85233–2805
R. F. Foster
Affiliation:
Tokyo Electron Arizona, 2120 West Guadalupe Road, Gilbert, Arizona 85233–2805
T. S. Cale
Affiliation:
Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Get access

Abstract

We discuss substrate temperature ramping effects during chemical vapor deposition of aluminum on nucleation density, texture, surface roughness, and resistivity of the resulting films. Results from three different process protocols are presented. Ramping the temperature down during the deposition from 673 K resulted in a larger fraction of small nuclei compared to deposition at a constant temperature of 573 K. From among the protocols studied, the lowest surface roughness was obtained by initially depositing for a short time while ramping the temperature down from 673 K, followed by deposition at 573 K, compared to all the other films. The same process protocol resulted in the highest Al(111) texturing, highest reflectivity, and lowest resistivity.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sivaram, S., Chemical Vapor Deposition (VNR, New York, 1995), pp. 168169.CrossRefGoogle Scholar
2.Dryer, M. L. and Ho, P. S., in Handbook of Multilevel Metallization for Integrated Circuits, edited by Wilson, S. R., Tracy, C. J., and Freeman, J. L. (Noyes, Park Ridge, NJ, 1993), p. 628.Google Scholar
3.Fiordalice, R., Ong, T., Garcia, S., Farkas, J., Fernandes, M., Freeman, M., Gall, M., Jain, A., Jawarani, D., Kawasaki, H., Klein, J., Roman, B., Sparks, T., Venkatraman, R., Vuong, T., Weitzman, E., and Pintchovski, F., in Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, edited by Havemann, R., Komiyama, H., and Tsubouchi, K. (Mater. Res. Soc. Symp. Proc. V-12, Pittsburgh, PA, 1997), p. 16.Google Scholar
4.Venkatraman, R., Marsh, R., Weitzman, E., Rogers, B., Fiordalice, R., Gall, M., Jawarani, D., Kawasaki, H., Herrick, M., Farkas, J., and Pintchovski, F., in Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, edited by Havemann, R., Komiyama, H., and Tsubouchi, K. (Mater. Res. Soc. Symp. Proc. V-12, Pittsburgh, PA, 1997), p. 63.Google Scholar
5.Simmonds, M. G. and Gladfelter, W.L., in The Chemistry of Metal CVD, edited by Kodas, T. and Hampden-Smith, M. (VCH, Weinheim, Germany, 1994), p. 45.Google Scholar
6.Lee, K-I., Kim, Y-S., and Joo, S-K., J. Electrochem. Soc. 139, 3578 (1992).CrossRefGoogle Scholar
7.Nishikawa, S., Tani, K., and Yamaji, T., J. Mater. Res. 7, 345 (1992).Google Scholar
8.Levy, R. A., Green, M.L., and Gallagher, P. K., J. Electrochem. Soc. 131 (9), 2175 (1984).CrossRefGoogle Scholar
9.Doad, S.S., LPCVD of Aluminum Using Triisobutyl Aluminum in a Cold-wall Single-wafer Reactor, M.S. Thesis, Arizona State University (December 1995).Google Scholar
10.Kim, Y. W., Petrov, I., and Green, J.E., J. Vac. Sci. Technol. A 14 (2), 346 (1996).Google Scholar
11.Knorr, D. B., Tracy, D. P., and Rodbell, K. P., Appl. Phys. Lett. 59, 3241 (1991).Google Scholar
12.Knorr, D. B. and Lu, T-M., Appl. Phys. Lett. 54, 2210 (1989).Google Scholar
13.Vaidya, S. and Sinha, A. K., Thin Solid Films 75, 253 (1981).CrossRefGoogle Scholar
14.Bent, B. E., Nuzzo, R. G., and Dubois, L.H., J. Am. Chem. Soc. 111, 1634 (1989).Google Scholar
15.Cale, T.S., Jain, M. K., and Raupp, G. B., J. Electrochem. Soc. 137, 1526 (1990).CrossRefGoogle Scholar
16.Tracy, K. M., Bolnedi, S., Leusink, G. J., and Cale, T. S., in Advanced Metallization and Interconnect Systems for ULSI Applications in 1995, edited by Ellwanger, R.C. and Wang, S-Q. (Mater. Res. Soc. Symp. Proc. V-11, Pittsburgh, PA, 1996), p. 563.Google Scholar
17. Image Analysis Software version 1.60, free application software available on the website of the Division of Computer Research and Technology, National Institutes of Health (at http://www.nih.gov).Google Scholar
18.Kim, J-Y., Reucroft, P. J., and Park, D-K., Thin Solid Films 289, 184 (1996).CrossRefGoogle Scholar