Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T10:02:46.459Z Has data issue: false hasContentIssue false

Phase transition and dislocation nucleation in Cu–Nb layered composites during physical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Jian Wang*
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Richard G. Hoagland
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Amit Misra
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Using classical molecular dynamics simulations, we have investigated the growth of {111} Cu on Nb {110} surface. Our results reveal that the deposited Cu layer initially grows as body-centered cubic (bcc) and Vernier misfits are observed in the interface of bcc Cu and bcc Nb. As it continues to grow, the bcc Cu {110} transforms into face-centered cubic (fcc) Cu {111}. The phase transition starts after the bcc Cu layer has accumulated about 3 monolayers and is finished depending on deposition parameters. Nuclei of fcc Cu {111} form in the top surface of Cu and grow in plane and toward the interface. Partial dislocations in the fcc Cu layer nucleate during the late stage of the transition, and the stacking faults grow as the Cu layer thickens.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., Embury, J.D.: Structure and mechanical properties of Cu–X (X = Nb, Cr, Ni) nanolayered composites. Scripta Mater. 39, 555 1998CrossRefGoogle Scholar
2Clemens, B.M., Kung, H.Barnett, S.A.: Structure and strength of multilayers. MRS Bull. 24(2), 20 1999CrossRefGoogle Scholar
3Misra, A., Hirth, J.P., Hoagland, R.G., Embury, J.D.Kung, H.: Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater. 52, 2387 2004CrossRefGoogle Scholar
4Anderson, P.M., Bingert, J.F., Misra, A.Hirth, J.P.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater. 51, 6059 2003CrossRefGoogle Scholar
5Misra, A., Hoagland, R.G.Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021 2004CrossRefGoogle Scholar
6Hoagland, R.G., Mitchell, T.E., Hirth, J.P.Kung, H.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82, 643 2002Google Scholar
7Hoagland, R.G., Kurtz, R.J.Henager, C.H.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Mater. 50, 775 2004CrossRefGoogle Scholar
8Hoagland, R.G., Hirth, J.P.Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86, 3537 2006CrossRefGoogle Scholar
9Kung, H., Lu, Y.C., Griffin, A.J., Nastasi, M., Mitchell, T.E.Embury, J.D.: Observation of body centered cubic Cu in Cu/Nb nanolayered composites. Appl. Phys. Lett. 71, 2103 1997CrossRefGoogle Scholar
10Mitlin, D., Misra, A., Hoagland, R.G., Embury, J.D., Hirth, J.P.Mitchell, T.E.: Formation of misfit dislocations in nanoscale Ni–Cu bilayer films. Philos. Mag. 84, 719 2004CrossRefGoogle Scholar
11Wang, J., Huang, H., Kesapragada, S.V.Gall, D.: Growth of Y-shaped nanorods through physical vapor deposition. Nano Lett. 5, 2505 2005CrossRefGoogle ScholarPubMed
12Wang, J.Huang, H.: Mechanisms of Cu 〈111〉 columns growth in Kinetics-Driven Nanopatterning on Surfaces, edited by E. Chason, G.H. Gilmer, H. Huang, and E. Wang (Mater. Res. Soc. Symp. Proc. 849, Warrendale, PA, 2005), p. 91CrossRefGoogle Scholar
13Voter, A.F.Chen, S.P.: Accurate interatomic potentials for Ni, Al and Ni3Al in Characterization of Defects in Materials, edited by R.W. Siegel, J.R. Weertman, and R. Sinclair (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175CrossRefGoogle Scholar
14Johnson, R.A.Oh, D.J.: Analytic embedded atom method model for bcc metals. J. Mater. Res. 4, 1195 1989CrossRefGoogle Scholar
15Liu, C.L., Cohen, J.M., Adams, J.B.Voter, A.F.: EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt. Surf. Sci. 253, 334 1991CrossRefGoogle Scholar
16Huang, H.Wang, J.: Surface kinetics: Step-facet barriers. Appl. Phys. Lett. 83, 4752 2003CrossRefGoogle Scholar
17Wang, J., Huang, H.Cale, T.S.: Diffusion barriers on Cu surfaces and near steps. Modell. Simul. Mater. Sci. Eng. 12, 1209 2004CrossRefGoogle Scholar
18Demkowicz, M.J.Hoagland, R.G.: Structure of Kurdjumov– Sachs interfaces in simulations of a copper-niobium bilayer, J. Nucl. Mater. DOI: 10.1016/j.jnucmat.2007.02.001 2007Google Scholar
19Henager, C.H., Kurtz, R.J.Hoagland, R.G.: Interactions of dislocations with disconnections in fcc metallic nanolayered materials. Philos. Mag. A 84, 2277 2004CrossRefGoogle Scholar
20Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255 1984CrossRefGoogle Scholar
21Hoover, W.G.: Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695 1985CrossRefGoogle ScholarPubMed
22Wang, J.Huang, H.: Shockley partial dislocations to twin: Another formation mechanism and generic driving force. Appl. Phys. Lett. 85, 5983 2004CrossRefGoogle Scholar
23Wang, J.Huang, H.: Novel deformation mechanism of twinned nanowires. Appl. Phys. Lett. 88, 203112 2006CrossRefGoogle Scholar
24Faken, D.Jonsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279 1994CrossRefGoogle Scholar
25Demkowicz, M.J., Wang, J.Hoagland, R.G.: Interfaces between dissimilar crystalline solids, in Dislocations in Solids Vol. 14 edited by J. P. Hirth. DOI: 10.1016/S1572-4859(07)00003-4 2008 Chap. 83CrossRefGoogle Scholar
26Wormeester, H., Hüger, E.Bauer, E.: hcp and bcc Cu and Pd films. Phys. Rev. Lett. 77, 1540 1996CrossRefGoogle Scholar
27Zhou, X.W.Wadley, H.N.G.: Atomistic simulations of low energy ion assisted vapor deposition of metal multilayers. J. Appl. Phys. 87, 2273 2000CrossRefGoogle Scholar
28Misra, A., Hirth, J.P.Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 2005CrossRefGoogle Scholar
29Anderson, P.M.Li, Z.: A Peierls analysis of the critical stress for transmission of a screw dislocation across a coherent, sliding interface. Mater. Sci. Eng., A 319, 182 2001CrossRefGoogle Scholar
30Shen, Y.Anderson, P.M.: Transmission of a screw dislocation across a coherent slipping interface. Acta Mater. 54, 3941 2006CrossRefGoogle Scholar