Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T23:53:57.708Z Has data issue: false hasContentIssue false

Oxidation protective barrier coatings for high-temperature polymer matrix composites

Published online by Cambridge University Press:  03 March 2011

David R. Harding
Affiliation:
NASA Lewis Research Center, NYMA, 3001 Aerospace Technology Boulevard, Cleveland, Ohio 44142
James K. Sutter
Affiliation:
NASA Lewis Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135
Marla A. Schuerman
Affiliation:
Xavier University, Cincinnati, Ohio 45207
Elizabeth A. Crane
Affiliation:
John Carroll University, Cleveland, Ohio 44118
Get access

Abstract

Three coating techniques (metal-organic chemical vapor deposition, magnetron sputtering, and plasma-enhanced chemical vapor deposition) were employed to deposit different coating materials (alumina, a superalloy, and silicon nitride) on graphite-fiber-reinforced polyimide composites to protect against oxidation at elevated temperatures. Adhesion and integrity of the coatings were evaluated by isothermal aging (371 °C for 500 h) and thermal cycling (25 to 232 °C for 1000 cycles and −18 to 232 °C for 300 cycles). Best results were achieved with a plasma-deposited, amorphous silicon nitride (a-SiN: H) coating, which withstood stresses from 0.18 to −1.6 GPa. The major factors affecting the suitability of a-SiN: H as an oxidation protective coating are the surface finish of the polymer composite and the presence of a sizable hydrogen content in the coating.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Meador, M. A., Cavano, P. T., and Malarik, D. C., in Structural Composites: Design and Processing Technologies (Proceedings of the Sixth Annual ASM/ESD Advanced Composite Conference, October 8–11, 1990), pp. 529632.Google Scholar
2Vannucci, R. D., SAMPE Quarterly 19 (1), 31 (1987).Google Scholar
3Yi, G. and Sayer, M., Ceram. Bull. 70 (7), 1173 (1991).Google Scholar
4Kordesch, M. E. and Hoffman, R. W., Thin Solid Films 107, 365 (1983).CrossRefGoogle Scholar
5Chambers, D. L., Taylor, K. A., Wan, C. T., and Emrick, A. J., Surf. Coat. Technol. 41 (3), 315 (1990).CrossRefGoogle Scholar
6Harding, D. R. and Webb, R. D., in HITEMP Review 1992— Advanced High Temperature Engine Materials Program, Vol. I: Overviews, Fan/Compressor Materials (Polymer Matrix Composites), and Fibers (NASA Lewis Research Center, Cleveland, OH, 1992), pp. 8-1 to 8-12.Google Scholar
7Harding, D. R., in HITEMP Review 1991 —Advanced High Temperature Engine Materials Technology Program (NASA Lewis Research Center, Cleveland, OH, 1991), pp. 10-1 to 10-10.Google Scholar
8Aboaf, J. A., J. Electrochem. Soc: Solid State Science 114 (9), 948 (1967).CrossRefGoogle Scholar
9Kern, W. and Rosier, R. S., J. Vac. Sci. Technol. 14, 1082 (1977).CrossRefGoogle Scholar
10Bardnes, C. R. and Geesner, C. R., J. Electrochem. Soc. 107, 98 (1960).CrossRefGoogle Scholar
11Niihara, K. and Hirai, T., J. Mater. Sci. 12, 1233 (1977).CrossRefGoogle Scholar
12Vannucci, R. D. and Cifani, D., presented at the 20th Int. SAMPE Tech. Conf., September (1988).Google Scholar
13Saraie, J., Kwon, J., and Yodogawa, Y., J. Electrochem. Soc: Solid State Science 132 (4), 890 (1985).CrossRefGoogle Scholar
14Saraie, J., Ono, K., and Takeuchi, S., J. Electrochem. Soc. 136 (10), 3139 (1989).CrossRefGoogle Scholar
15Porta, G. M., Foust, D. F., Burrell, M. C., and Karas, B. R., Polymer Engineering and Science 32 (15), 1021 (1992).CrossRefGoogle Scholar
16Lanford, W. A. and Rand, M. J., J. Appl. Phys. 49 (4), 2473 (1978).CrossRefGoogle Scholar
17Chow, R., Lanford, W. A., Ke-Ming, W., and Rosier, R. S., J. Appl. Phys. 53 (8), 5630 (1982).CrossRefGoogle Scholar
18Kamata, K., Aizawa, N., and Moriyama, M., J. Mater. Sci. Lett. 5, 1055 (1986).CrossRefGoogle Scholar
19Bowles, K. J. and Meyers, A., NASA Technical Memorandum 87204 (1986).Google Scholar
20Wilson, D., Wells, J. K., Hay, J. N., Lind, D., Owens, G. A., and Johnson, F., SAMPLE J. 23, 35 (1987).Google Scholar
21Arnold, S. M., Arya, V. K., and Melis, M. E., NASA Technical Memorandum 103204 (1990).Google Scholar
22Reynes, B., Ance, C., Stoquert, J. P., and Bruyere, J. C., Thin Solid Films 203, 87 (1991).CrossRefGoogle Scholar
23Osenbach, J. W., Zellm, J. L., Knolle, W. R., and Howard, L. J., J. Appl. Phys. 67 (11), 6830 (1990).CrossRefGoogle Scholar
24Parsons, G. N., Souk, J. H., and Batey, J., J. Appl. Phys. 70 (3), 1553 (1991).CrossRefGoogle Scholar
25Guo, H. and Alam, M., Thin Solid Films 212, 173 (1992).CrossRefGoogle Scholar
26Chalker, P. R., Jones, A. M., Johnson, C., and Buckley-Golder, I. M., Surf. Coating Technol. 47/1–3, 365 (1991).CrossRefGoogle Scholar
27Hasegawa, S., Amano, Y., Inokuma, T., and Kurata, Y., J. Appl. Phys. 72 (12), 5676 (1992).CrossRefGoogle Scholar
28Baglio, J. A., Farnsworth, B. C., Hankin, S., Hamill, G., and O'Neil, D., Thin Solid Films 212, 180 (1992).CrossRefGoogle Scholar
29Pearce, C. W., Fetcho, R. F., Grossm, M. D., Koefer, R. F., and Pudliner, R. A., J. Appl. Phys. 71 (4), 1838 (1992).CrossRefGoogle Scholar
30Stoney, G. G., Proc. R. Soc. A82, 172 (1909).Google Scholar
31Retajczyk, T. F. and Sinha, A. K., Thin Solid Films 70, 241 (1980).CrossRefGoogle Scholar
32Windischmann, H., Epps, G. F., Congs, Y., and Collins, R. W., J. Appl. Phys. 69, 2231 (1977).CrossRefGoogle Scholar
33Elmes, D. A. and Gilbert, D. C., presented at The Plastics and Rubber Institute 3rd International Conference of Fibre Reinforced Composites, 35/1, March 23–25 (1988).Google Scholar
34Thornel Product Information, Amoco Performance Products, Inc.Google Scholar
35Koskinen, J. and Johnson, H. H., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 63.Google Scholar