Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T19:44:28.871Z Has data issue: false hasContentIssue false

Microstructure and Optical Properties of Au–Y2O3-stabilized ZrO2 Nanocomposite Films

Published online by Cambridge University Press:  03 March 2011

George Sirinakis
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany—State Universityof New York, Albany, New York 12203
Rezina Siddique
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany—State Universityof New York, Albany, New York 12203
Christos Monokroussos
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany—State Universityof New York, Albany, New York 12203
Alain E. Kaloyeros*
Affiliation:
College of Nanoscale Science and Engineering, The University at Albany—State Universityof New York, Albany, New York 12203
*
b) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanocomposite films consisting of gold nanoparticles embedded in an yttria stabilized zirconia (YSZ) matrix were synthesized at room temperature by radio-frequency co-sputtering from YSZ and Au targets at a 5 mTorr working pressure. The films were subsequently annealed for 2 h in 1 atm argon, with the annealing temperature varied from 600 to 1000 °C in steps of 100 °C. The composition, microstructure, and optical properties of the films were characterized as a function of annealing temperature by Rutherford backscattering spectrometry, scanning electron microscopy, Auger electron spectroscopy, x-ray diffraction, and absorption spectroscopy. An optical absorption band due to the surface plasmon resonance (SPR) of the Au nanoparticles was observed around a wavelength of 600 nm. Furthermore, the SPR band full width at half-maximum exhibited an inverse linear dependence on the radius of the Au nanoparticle, with a slope parameter A = 0.18, indicating a weak interaction between the YSZ matrix and the Au nanoparticles. The experimentally observed SPR dependence on nanoparticle size is discussed within the context of the Mie theory and its size-dependent optical constants.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Murray, C.B., Kegar, C.R. and Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000).CrossRefGoogle Scholar
2Link, S. and El-Sayed, M.A.: Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54, 331 (2003).CrossRefGoogle ScholarPubMed
3MacFarland, A.D. and Van Duyne, R.P.: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057 (2003).CrossRefGoogle Scholar
4Ando, M., Kobayashi, T., Iijima, S. and Haruta, M.: Optical CO sensitivity of Au–CuO composite film by use of the plasmon absorption change. Sens. Actuators B 96, 589 (2003).CrossRefGoogle Scholar
5Fukumi, K., Chayahara, A., Kadono, K., Sakaguchi, T., Horino, Y., Miya, M., Fujii, K., Hayakawa, J. and Satou, M.: Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties. J. Appl. Phys. 75, 3075 (1994).CrossRefGoogle Scholar
6Tanahashi, I., Manabe, Y., Tohda, T., Sasaki, S. and Nakamura, A.: Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method. J. Appl. Phys. 79, 1244 (1996).CrossRefGoogle Scholar
7Hosoya, Y., Suga, T., Yanagawa, T. and Kurokawa, Y.: Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina. J. Appl. Phys. 81, 1475 (1997).CrossRefGoogle Scholar
8Boulouz, M., Boulouz, A., Giani, A. and Boyer, A.: Influence of substrate temperature and target composition on the properties of yttria-stabilized zirconia thin films grown by r.f. reactive magnetron sputtering. Thin Solid Films 323, 85 (1998).CrossRefGoogle Scholar
9Johner, G. and Schweitzer, J.K.: Thermal-barrier coatings for jet engine improvement. Thin Solid Films 119, 301 (1984).CrossRefGoogle Scholar
10Singhal, S.C.: Advances in solid oxide fuel cell technology. Solid State Ionics 135, 305 (2000).CrossRefGoogle Scholar
11Bohren, C.F. and Huffman, D.R.: Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), p. 82.Google Scholar
12Cullity, B.D. and Stock, S.R.: Elements of X-ray Diffraction, 3rd ed. (Prentice-Hall, Upper Saddle River, NJ, 2001), p. 388.Google Scholar
13Thermo, A.R.L. (private communication, 2003).Google Scholar
14Lide, D.R.: Handbook of Chemistry and Physics, 83rd ed. (CRC Press LLC, Boca Raton, FL, 2002).Google Scholar
15Allen, G.L., Bayles, R.A., Gile, W.W. and Jesser, W.A.: Small particle melting of pure metals. Thin Solid Films 144, 297 (1986).CrossRefGoogle Scholar
16Dick, K., Dhanasekaran, T., Zhang, Z. and Meisel, D.: Size-dependent melting of silica- encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312 (2002).CrossRefGoogle ScholarPubMed
17De Marchi, G., Mattei, G., Mazzoldi, P., Sada, C. and Miotello, A.: Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere. J. Appl. Phys. 92, 4249 (2002).CrossRefGoogle Scholar
18Christensen, N.E. and Seraphin, B.O.: Relativistic band calculation and the optical properties of gold. Phys. Rev. B 4, 3321 (1971).CrossRefGoogle Scholar
19Hövel, H., Fritz, S., Hilger, A., Kreibig, U. and Vollmer, M.: Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178 (1993).CrossRefGoogle ScholarPubMed
20Persson, B.N.J.: Polarizability of small spherical metal particles: Influence of the matrix environment. Surf. Sci. 281, 153 (1993).CrossRefGoogle Scholar
21Kreibig, U. and Vollmer, M.: Optical Properties of Metal Clusters (Springer, New York, 1995).CrossRefGoogle Scholar
22Ashcroft, N.W. and Mermin, N.D.: Solid State Physics (Saunders College Publishing, New York, NY, 1976), pp.10.Google Scholar
23Zafeiratos, S. and Kennou, S.: A study of gold ultrathin film growth on yttria-stabilized ZrO2(100). Surf. Sci. 443, 238 (1999).CrossRefGoogle Scholar
24Zafeiratos, S., Neophytides, S. and Kennou, S.: A photoelectron spectroscopy study of Au thin films on ZrO2 (100). Thin Solid Films 386, 53 (2001).CrossRefGoogle Scholar
25Kresin, V.: Collective resonances in silver clusters: Role of d electrons and the polarization-free surface layer. Phys. Rev. B 51, 1844 (1995).CrossRefGoogle ScholarPubMed
26Palpant, B., Prével, B., Lermé, J., Cottancin, E., Pellarin, M., Treilleux, M., Perez, A., Vialle, J.L. and Broyer, M.: Optical properties of gold clusters in the size range 2–4 nm. Phys. Rev. B 57, 1963 (1998).CrossRefGoogle Scholar
27Ferdigo, S., Harbich, W. and Buttet, J.: Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys. Rev. B 47, 10706 (1993).Google Scholar
28Johnson, P.B. and Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).CrossRefGoogle Scholar
29Dalacu, D. and Martinu, L.: Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films. J. Appl. Phys. 87, 228 (2000).CrossRefGoogle Scholar