Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T00:08:25.370Z Has data issue: false hasContentIssue false

A Method for Determining Crystallization Kinetic Parameters from one Nonisothermal Calorimetric Experiment

Published online by Cambridge University Press:  31 January 2011

Haoyue Zhang
Affiliation:
Department of Chemical Engineering, Tulane University, New Orleans, Louisiana 70118
Brian S. Mitchell*
Affiliation:
Department of Chemical Engineering, Tulane University, New Orleans, Louisiana 70118
*
a)Address all correspondence to this author.
Get access

Abstract

A new equation was developed for evaluating kinetic parameters in the isokinetic range of a phase transformation using nonisothermal calorimetric techniques. The Johnson–Mehl–Avrami equation was extended by considering that the transformation rate in an isothermal process can be translated into the nonisothermal transformation in an isokinetic range. The Avrami exponent, n, activation energy, E, and frequency factor, K0, were calculated from only one nonisothermal experiment by using the new kinetic equation for amorphous Se (a-Se), polysilane/polycarbosilane (PS/PCS), and lithium disilicate (LiO2 · 2SiO2 or LS2) samples with nucleation site saturation. The values of E and K0 calculated using the new kinetic equation agree well with those obtained by the Kissinger equation for the prenucleated a-Se, PS/PCS, and LS2 samples. The values of n indicate that volume crystallization is dominant in the bulk a-Se and LS2 samples, whereas surface crystallization is dominant in the powdered PS/PCS sample. These results for a-Se were confirmed by scanning and transmission electronic microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
2.Avrami, M., J. Chem. Phys. 8, 212 (1940).CrossRefGoogle Scholar
3.Avrami, M., J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
4.Johnson, W.A. and Mehl, R.F., Trans. Am. Inst. Mining Met. Engrs. 135, 416 (1939).Google Scholar
5.Kissinger, H.E., J. Res. NBS 57, 217 (1957).Google Scholar
6.Kissinger, H.E., Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
7.Henderson, D.W., J. Non-Cryst. Solids 30, 301 (1979).CrossRefGoogle Scholar
8.Ozawa, T., Polymer 12, 150 (1971).CrossRefGoogle Scholar
9.Christian, J.W., The Theory of Transformations in Metals and Alloys (Pergamon Press, Oxford, United Kingdom, 1965), p. 489.Google Scholar
10.Hull, F.C., Colton, R.A., and Mehl, R.F., Trans. Am. Inst. Mining Met. Engrs. 150, 185 (1942).Google Scholar
11.Krainer, H., Archiv. Eisenhuttenw. 9, 619 (1936).Google Scholar
12.Cahn, J.W., Acta Met. 4, 572 (1956).CrossRefGoogle Scholar
13.Gradshteyn, I.S. and Ryzhik, I.M., Table of Integrals, Series and Products, 5th ed., edited by Jeffrey, Alan (translated by Scripta Technica, Academic Press, New York, 1994), p. 113.Google Scholar
14.Vázquez, J., López-Alemany, P.L., Villares, P., and Jiménez-Garay, R., Mater. Lett. 38, 423 (1999).CrossRefGoogle Scholar
15.Martin, H-P., Irmer, G., and Müller, E., J. Eur. Ceram. Soc. 18, 193 (1998).CrossRefGoogle Scholar
16.Richter, R., Roewer, G., Boehme, U., Busch, K., Babonneau, F., Martin, H.P., and Müller, E., Appl. Organomet. Chem. 11, 71 (1997).3.0.CO;2-N>CrossRefGoogle Scholar
17.Martin, H-P., Müller, E., Richter, R., Roewer, G., and Brendler, E., J. Mater. Sci. 32, 1381 (1997).CrossRefGoogle Scholar
18.Mitchell, B.S., Zhang, H., Maljkovic, N., Ade, M., Kurtenbach, D., and Müller, E., J. Am. Ceram. Soc. 82, 2249 (1999).CrossRefGoogle Scholar
19.Zhang, H.Y., Hu, Z.Q., and Lu, K., Nanostruct. Mater. 5, 41 (1995).CrossRefGoogle Scholar
20.Weinberg, M.C., J. Am. Ceram. Soc. 74, 1905 (1991).CrossRefGoogle Scholar
21.Kurtenbach, D., Mitchell, B.S., Zhang, H., and Müller, E., Thermo-chim. Acta 337, 155 (1999).CrossRefGoogle Scholar
22.Ray, C.S. and Day, D.E., J. Am. Ceram. Soc. 73, 439 (1990).CrossRefGoogle Scholar
23.Marotta, A., Buri, A., Branda, F., and Saiello, S., in Nucleation and Crystallization in Glasses, Advances in Ceramics, Vol. 4 (American Ceramics Society, Columbus, OH, 1982), p. 146.Google Scholar
24.Hautojarvi, P., Vehanen, A., Kompa, V., and Pajane, E., J. Non-Cryst. Solids 29, 365 (1978).CrossRefGoogle Scholar
25.Thermophysical Properties of Matter, edited by Y.S. Touloukian, R.W. Powell, C.Y. Ho, and P.G. Klemens (IFI/Plenum, New York, 1970), Vol. 1, p. 314; Vol. 2, p. 585.Google Scholar
26.Scholze, H., Glass: Nature, Structure, and Properties, translated by Lakin, M.J. (Springer-Verlag, Heidelberg, 1990), p. 363.Google Scholar