Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T10:41:24.008Z Has data issue: false hasContentIssue false

Mechanical phase mapping of the Taza meteorite using correlated high-speed nanoindentation and EDX

Published online by Cambridge University Press:  20 August 2020

Jeffrey M. Wheeler*
Affiliation:
Laboratory for Nanometallurgy, Department of Materials Science, ETH Zürich, ZürichCH-8093, Switzerland
*
Get access

Abstract

Meteorites have one of the most unique and beautiful microstructures, the Widmanstätten structure. This consists of large, elongated bands which form an intricate octahedral lace of crystalline metal. This structure makes meteorites an ideal case to demonstrate the capabilities of mechanical phase mapping using high-speed nanoindentation. In this work, the mechanical properties and composition of the Taza meteorite were mapped using ~100,000 indentations to statistically determine the properties of the individual phases. Five microstructural phases were characterized in this meteorite: Kamacite, Plessite, Tetrataenite, Cloudy Zone, and Schreibersite. Mechanical phase identification was confirmed using EDX measurements, and the first direct, point-to-point correlation of EDX and large-scale indentation maps was achieved. Mechanical phase maps showed superior phase contrast to EDX in two phases. An indentation property map or a mechanical phase map using a 2D histogram was used to visualize and statistically characterize the phases and identify trends in their relationships.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., and Van Der Beek, C.J.: Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications for paleomagnetism of meteorites. Earth Planet. Sci. Lett. 306(3–4), 241 (2011).CrossRefGoogle Scholar
Nichols, C.I.O., Krakow, R., Herrero-Albillos, J., Kronast, F., Northwood-Smith, G., and Harrison, R.J.: Microstructural and paleomagnetic insight into the cooling history of the IAB parent body. Geochim. Cosmochim. Acta 229(1) (2018).CrossRefGoogle Scholar
Axon, H.J.: The metallurgy of meteorites. Prog. Mater. Sci. 13, 183 (1968).CrossRefGoogle Scholar
Yang, J., Goldstein, J.I., and Scott, E.R.D.: Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochim. Cosmochim. Acta 74(15), 4471 (2010).CrossRefGoogle Scholar
Lewis, L.H., Mubarok, A., Poirier, E., Bordeaux, N., Manchanda, P., Kashyap, A., Skomski, R., Goldstein, J., Pinkerton, F.E., Mishra, R.K., Kubic, R.C. Jr., and Barmak, K.: Inspired by nature: investigating tetrataenite for permanent magnet applications. J. Phys. Condens. Matter 26(6), 064213 (2014).CrossRefGoogle ScholarPubMed
Lin, L., Goldstein, J., and Williams, D.B.: Analytical electron microscopy study of the plessite structure in the Carlton iron meteorite. Geochim. Cosmochim. Acta 41(12), 1861 (1977).CrossRefGoogle Scholar
Feller-Kniepmeier, M. and Uhlig, H.: Nickel analyses of metallic meteorites by the electron-probe microanalyser. Geochim. Cosmochim. Acta 21(3–4), 257 (1961).CrossRefGoogle Scholar
Dalton, F.: Microhardness testing of iron meteorites (concluded). J. R. Astron. Soc. Can. 45, 162 (1951).Google Scholar
Dalton, F.: Microhardness testing of Iron meteorites (with plate XI). J. R. Astron. Soc. Can. 44, 185 (1950).Google Scholar
Jain, A.V., Gordon, R.B., and Lipschutz, M.E.: Hardness of kamacite and shock histories of 119 meteorites. J. Geophys. Res. 77(35), 6940 (1972).CrossRefGoogle Scholar
Russell, K., Kenik, E., and Miller, M.: Characterization of the Tishomingo meteorite. Surf. Sci. 246(1–3), 292 (1991).CrossRefGoogle Scholar
Hintsala, E.D., Hangen, U., and Stauffer, D.D.: High-throughput nanoindentation for statistical and spatial property determination. JOM 70(4), 494 (2018).CrossRefGoogle Scholar
Roa, J., Phani, P.S., Oliver, W.C., and Llanes, L.: Mapping of mechanical properties at microstructural length scale in WC-Co cemented carbides: Assessment of hardness and elastic modulus by means of high speed massive nanoindentation and statistical analysis. Int. J. Refract. Met. Hard Mater. 75, 211 (2018).CrossRefGoogle Scholar
Guillonneau, G., Mieszala, M., Wehrs, J., Schwiedrzik, J., Grop, S., Frey, D., Philippe, L., Breguet, J.-M., Michler, J., and Wheeler, J.M.: Nanomechanical testing at high strain rates: New instrumentation for nanoindentation and microcompression. Mater. Des. 148, 39 (2018).CrossRefGoogle Scholar
Ulm, F.J., Vandamme, M., Bobko, C., Alberto Ortega, J., Tai, K., and Ortiz, C.: Statistical indentation techniques for hydrated nanocomposites: Concrete, bone, and shale. J. Am. Ceram. Soc. 90(9), 2677 (2007).CrossRefGoogle Scholar
Hilloulin, B., Robira, M., and Loukili, A.: Coupling statistical indentation and microscopy to evaluate micromechanical properties of materials: Application to viscoelastic behavior of irradiated mortars. Cem. Concr. Compos. 94, 153 (2018).CrossRefGoogle Scholar
Konstantopoulos, G., Koumoulos, E.P., and Charitidis, C.A.: Testing novel portland cement formulations with carbon nanotubes and intrinsic properties revelation: Nanoindentation analysis with machine learning on microstructure identification. Nanomaterials 10(4), 645 (2020).CrossRefGoogle ScholarPubMed
De Nicolás, M., Besharatloo, H., Wheeler, J.M., de Dios, M., Alvaredo, P., Roa, J., Ferrari, B., Llanes, L., and Gordo, E.: Influence of the processing route on the properties of Ti (C, N)-Fe15Ni cermets. Int. J. Refract. Met. Hard Mater. 87, 105046 (2020).CrossRefGoogle Scholar
Besharatloo, H., Gordon, S., Rodriguez-Suarez, T., Can, A., Oliver, W., Llanes, L., and Roa, J.: Small-scale mechanical properties of constitutive phases within a polycrystalline cubic boron nitride composite. J. Eur. Ceram. Soc. 39(16), 5181 (2019).CrossRefGoogle Scholar
Wieczerzak, K., Michler, J., Wheeler, J.M., Lech, S., Chulist, R., Czub, J., Hoser, A., Schell, N., and Bała, P.: An in situ and ex situ study of χ phase formation in a hypoeutectic Fe-based hardfacing alloy. Mater. Des. 188, 108438 (2020).CrossRefGoogle Scholar
Vignesh, B., Oliver, W., Kumar, G.S., and Phani, P.S.: Critical assessment of high speed nanoindentation mapping technique and data deconvolution on thermal barrier coatings. Mater. Des. 181, 108084 (2019).CrossRefGoogle Scholar
Sebastiani, M., Moscatelli, R., Ridi, F., Baglioni, P., and Carassiti, F.: High-resolution high-speed nanoindentation mapping of cement pastes: Unravelling the effect of microstructure on the mechanical properties of hydrated phases. Mater. Des. 97, 372 (2016).CrossRefGoogle Scholar
Němeček, J. and Lukeš, J.: High-speed mechanical mapping of blended cement pastes and its comparison with standard modes of nanoindentation. Mater. Today Commun. 23, 100806 (2020).CrossRefGoogle Scholar
Chen, Y., Hintsala, E., Li, N., Becker, B.R., Cheng, J.Y., Nowakowski, B., Weaver, J., Stauffer, D., and Mara, N.A.: High-throughput nanomechanical screening of phase-specific and temperature-dependent hardness in AlxFeCrNiMn high-entropy alloys. JOM 71(10), 3368 (2019).CrossRefGoogle Scholar
Xiao, Y., Besharatloo, H., Gan, B., Maeder, X., Spolenak, R., and Wheeler, J.M.: Combinatorial investigation of Al–Cu intermetallics using small-scale mechanical testing. J. Alloys Compd. 822, 153536 (2020).CrossRefGoogle Scholar
Hartigan, J.A. and Wong, M.A.: Algorithm AS 136: A K-means clustering algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 28(1), 100 (1979).Google Scholar
Tromas, C., Arnoux, M., and Milhet, X.: Hardness cartography to increase the nanoindentation resolution in heterogeneous materials: Application to a Ni-based single-crystal superalloy. Scr. Mater. 66(2), 77 (2012).CrossRefGoogle Scholar
Zhao, J.-C.: A combinatorial approach for efficient mapping of phase diagrams and properties. J. Mater. Res. 16(6), 1565 (2001).CrossRefGoogle Scholar
Zhao, J.-C.: A combinatorial approach for structural materials. Adv. Eng. Mater. 3(3), 143 (2001).3.0.CO;2-F>CrossRefGoogle Scholar
Keil, T., Bruder, E., and Durst, K.: Exploring the compositional parameter space of high-entropy alloys using a diffusion couple approach. Mater. Des. 176, 107816 (2019).CrossRefGoogle Scholar
Skála, R. and Císařová, I.: Crystal structure of meteoritic Schreibersites: Determination of absolute structure. Phys. Chem. Miner. 31(10), 721 (2005).CrossRefGoogle Scholar
Russell, S.S., Zipfel, J., Grossman, J.N., and Grady, M.M.: The meteoritical bulletin, no. 86. Meteorit. Planet. Sci. 37, A157 (2002).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2011).CrossRefGoogle Scholar
Sudharshan Phani, P. and Oliver, W.C.: A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing. Mater. Des. 164, 107563 (2019).CrossRefGoogle Scholar