Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T12:41:40.315Z Has data issue: false hasContentIssue false

The Indentation Load-depth Curve of Ceramics

Published online by Cambridge University Press:  31 January 2011

M. Sakai
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan
S. Shimizu
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan
T. Ishikawa
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan
Get access

Abstract

The pyramidal indentation-induced surface deformation of brittle ceramics is examined on the basis of extensive test results for indentation load (P)-depth (h) curves during loading/unloading cycle. A mechanically stiff test system is essential for obtaining P-h curves acceptable and reliable for subsequent analyses. Both the loading and unloading P-h curves are expressed by quadratic functions within experimental variations for all the indenters used (Vickers, Berkovich, and Knoop). The loading curve is then related to the Meyer hardness and the unloading curve to Young's modulus by the use of semiempirical equations which enable one to estimate these moduli from the observed loading/unloading parameters. An elastoplastic constitutive equation for indentation surface deformation is theoretically derived. This equation not only predicts well the experimental observations but also gains an important physical insight into the Meyer hardness. The Meyer hardness of brittle materials is not a measure for plasticity, but an elastic/plastic parameter which significantly depends on the geometry of indenter. The concept and experimental determination of “true” hardness as a characteristic material measure for plasticity are proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tabor, D., Hardness of Metals (Clarendon Press, Oxford, UK, 1951).Google Scholar
2.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).CrossRefGoogle Scholar
3.Stilwell, N.A. and Tabor, D., Proc. Phys. Soc. London 78, 169 (1961).CrossRefGoogle Scholar
4.Bulychev, S.I., Alekhin, V. P., Shorshorov, M. Kh., Ternovskii, A. P., and Shnyrev, G.D., Zavod. Lab. 41, 1137 (1975).Google Scholar
5.Bulychev, S.I. and Alekhin, V.P., Zavod. Lab. 53, 76 (1987).Google Scholar
6.King, R. B., Int. J. Solids Structures 23, 1657 (1987).CrossRefGoogle Scholar
7.Lawn, B.R. and Howes, V.R., J. Mater. Sci. 16, 2745 (1981).CrossRefGoogle Scholar
8.Loubet, J. L., Georges, J. M., and Meille, G., in Microindentation Techniques in Materials Science and Engineering, edited by Blay, P. J. and Lawn, B.R. (ASTM STP 889, Philadelphia, PA, 1986), p. 72.Google Scholar
9.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
10.Mayo, M. J., Siegel, R. W., Liao, Y. X., and Nix, W. D., J. Mater. Res. 7, 973 (1992).CrossRefGoogle Scholar
11.Söderlund, E. and Rowcliffe, D. J., J. Hard Mater. 5, 149 (1994).Google Scholar
12.Zeng, K., Giannakopoulos, A.E., and Rowcliffe, D. J., Acta Metall. Mater. 43, 1945 (1955).CrossRefGoogle Scholar
13.Zeng, K., Söderlund, E., Giannakopoulos, A.E., and Rowcliffe, D. J., Acta Mater. 44, 1127 (1996).CrossRefGoogle Scholar
14.Larsson, P-L., Giannakopoulos, A.E., Söderlund, E., Rowcliffe, D.J., and Vestergaard, R., Int. J. Solids Structures 33, 221 (1996).CrossRefGoogle Scholar
15.Pharr, G.M. and Cook, R. F., J. Mater. Res. 5, 847 (1990).CrossRefGoogle Scholar
16.Pharr, G. M., Oliver, W. C., and Brotzen, F. R., J. Mater. Res. 7, 613 (1992).CrossRefGoogle Scholar
17.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
18.Cook, R.F. and Pharr, G. M., J. Hard Mater. 5, 179 (1994).Google Scholar
19.Tanaka, K., Koguchi, H., and Mura, T., Int. J. Eng. Sci. 27, 11 (1989).CrossRefGoogle Scholar
20.Tanaka, K. and Koguchi, H., in Micromechanics and Inhomogeneity, edited by Weng, G. J., Taya, M., and Abé, H. (Springer-Verlag, New York, 1990), p. 421.CrossRefGoogle Scholar
21.Murakami, Y. and Itokazu, M., Int. J. Solids Structures 34, 4005 (1997).CrossRefGoogle Scholar
22.Murakami, Y., Tanaka, K., Itokazu, M., and Shimamoto, A., Philos. Mag. A69, 1131 (1994).CrossRefGoogle Scholar
23.Field, J. S. and Swain, M. V., J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
24.Weppelmann, E.R., Field, J.S., and Swain, M.V., J. Mater. Res. 8, 830 (1993).CrossRefGoogle Scholar
25.Field, J. S. and Swain, M. V., J. Mater. Res. 10, 101 (1995).CrossRefGoogle Scholar
26.Marx, V. and Balke, H., Acta Mater. 45, 3791 (1997).CrossRefGoogle Scholar
27.Sakai, M., Acta Metall. Mater. 41, 1751 (1993).CrossRefGoogle Scholar
28.Meyer, E., Zeits. d. Vereines Deutsch. Ingenieure 52, 645, 740, 835 (1908).Google Scholar
29.Ludwik, P., Kegelprobe, Die (J. Springer, Berlin, Germany, 1908).Google Scholar
30.Smith, R. and Sandland, G., Proc. Ins. Mech. Eng. 1, 623 (1922).CrossRefGoogle Scholar
31.Berkovich, E.S., Int. Diamond Rev. 11, 129 (1951).Google Scholar
32.Knoop, F., Peters, C. G., and Emerson, W.B., Natl. Bureau Standards 23, 39 (1939).CrossRefGoogle Scholar
33.Sneddon, I. N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
34.Sakai, M., unpublished.Google Scholar