Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T10:01:18.582Z Has data issue: false hasContentIssue false

High-temperature Creep Resistance in Rare-earth-doped, Fine-grained Al2O3

Published online by Cambridge University Press:  31 January 2011

H. Yoshida
Affiliation:
Ceramic Materials Laboratory, Department of Material Science, Faculty of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Y. Ikuhara
Affiliation:
Ceramic Materials Laboratory, Department of Material Science, Faculty of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
T. Sakuma
Affiliation:
Ceramic Materials Laboratory, Department of Material Science, Faculty of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
Get access

Abstract

High-temperature creep in undoped Al2O3 and La2O3- or Y2O3- or Lu2O3-doped Al2O3 with a grain size of about 1 µm is examined in uniaxial compression testing at temperatures between 1150 and 1350 °C. The high-temperature creep resistance in Al2O3 is highly improved by the rare-earth oxide doping in the level of 0.045 mol %, and the creep rate is suppressed in the order La2O3 <Y2O3 <Lu2O3. Rare-earth ions in each doped Al2O3 are found to segregate in Al2O3 grain boundaries without forming amorphous phase or second-phase particles. The activation energy for creep in undoped Al2O3 is estimated to be 410 kJ/mol, while it is about 800 kJ/mol in the three rare-earth oxide-doped Al2O3. The grain boundary diffusivity must be highly reduced by the segregation of the dopant cation in Al2O3 grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Paladino, A. E. and Coble, R. L., J. Am. Ceram. Soc. 46, 133136 (1963).CrossRefGoogle Scholar
2.Heuer, A. H., Cannon, R. M., and Tighe, N. J., in Ultrafine-Grain Ceramics, edited by Burke, J. J., Reed, N. L., and Weiss, V. (Syracuse University Press, Syracuse, NY, 1970), pp. 339365.CrossRefGoogle Scholar
3.Langdon, T. G. and Mohamed, F. A., J. Mater. Sci. 13, 473482 (1978).CrossRefGoogle Scholar
4.Heuer, A. H., Tighe, N. J., and Cannon, R. M., J. Am. Ceram. Soc. 63, 5358 (1980).CrossRefGoogle Scholar
5.Frost, H. J. and Ashby, M. F., in Deformation–Mechanism Maps (Pergamon, Oxford, U.K., 1982), p. 98.Google Scholar
6.Chokshi, A. H. and Porter, J. R., J. Mater. Sci. 21, 705710 (1986).CrossRefGoogle Scholar
7.Wakai, F., Iga, T., and Nagano, T., Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 96, 12061209 (1988).CrossRefGoogle Scholar
8.Chokshi, A. H. and Langdon, T. G., Mater. Sci. Tech. 25, 577584 (1991).CrossRefGoogle Scholar
9.Chokshi, A. H., J. Mater. Sci. 25, 32213228 (1990).CrossRefGoogle Scholar
10.Cho, J., Harmer, M. P., Chan, H. M., Rickman, J. M., and Thompson, A. M., J. Am. Ceram. Soc. 80, 10131017 (1997).CrossRefGoogle Scholar
11.Yoshida, H., Okada, K., Ikuhara, Y., and Sakuma, T., Philos. Mag. Lett. 76, 914 (1997).CrossRefGoogle Scholar
12.Sakuma, T., Ikuhara, Y., Takigawa, Y., and Thavorniti, P., Mater. Sci. Eng. 234–236, 226229 (1997).CrossRefGoogle Scholar
13.Takigawa, Y., Ikuhara, Y., and Sakuma, T., in Materials Science Forum, Vols. 243–245, Proceedings of the 1997 International Conference on Superplasticity in Advanced Materials (ICSAM-97), edited by Chokshi, A. H. (Trans Tech Publications, Switzerland, 1997), pp. 425430.Google Scholar
14.Xue, L. A. and Chen, I-W., J. Am. Ceram. Soc. 73, 35183521 (1990).CrossRefGoogle Scholar
15.Burton, B., Mater. Sci. Eng. 10, 914 (1972).CrossRefGoogle Scholar
16.Mukherjee, A. K., Mater. Sci. Eng. 8, 8389 (1971).CrossRefGoogle Scholar
17.Gifkins, R. C., Metall. Trans. A 7A, 12251232 (1976).CrossRefGoogle Scholar
18.Arieli, A. and Mukherjee, A. K., Mater. Sci. Eng. 45, 6170 (1980).CrossRefGoogle Scholar
19.Cannon, R. M., Rhodes, W. H., and Heuer, A. H., J. Am. Ceram. Soc. 63, 4653 (1980).CrossRefGoogle Scholar
20.Oishi, Y. and Kingery, W. D., J. Chem. Phys. 33, 480486 (1960).CrossRefGoogle Scholar
21.Gall, M. L., Lesage, B., and Bernardini, J., Philos. Mag. A 70, 761773 (1994).CrossRefGoogle Scholar
22.Prot, D. and Monty, C., Philos. Mag. A 73, 899917 (1996).CrossRefGoogle Scholar
23.Mizuno, M., Berjoan, R., Coutures, J. P., and Foex, M., Yogyo Kyokaishi 82, 631636 (1976).Google Scholar
24.Noguti, T. and Mizuno, M., Kogyo Kagaku Zasshi 70, 834839 (1967).Google Scholar
25.Schneider, S. J., Roth, R. S., and Waring, J. L., J. Research Natl. Bur. Standards 65A, 345374 (1961).CrossRefGoogle Scholar
26.Priester, L. and Lartigue, S., J. Eur. Ceram. Soc. 8, 4757 (1991).CrossRefGoogle Scholar
27.Shannon, R. D., Acta. Crystallogr. A32, 751767 (1976).CrossRefGoogle Scholar