Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T19:36:02.968Z Has data issue: false hasContentIssue false

High-pressure cation-exchange treatment of a ZSM-5 zeolite

Published online by Cambridge University Press:  31 January 2011

Aijie Han
Affiliation:
Department of Chemistry, University of Texas–Pan America, Edinburg, Texas 78539
Yu Qiao*
Affiliation:
Department of Structural Engineering, University of California at San Diego,La Jolla, California 92093-0085
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Under ambient pressure, an aqueous solution may not enter the nanopores of a hydrophobic ZSM-5 zeolite, which imposes difficulties to cation-exchange treatment. In the current study, a high-pressure cation-exchange technique is developed. With a relatively short treatment time, the degree of hydrophobicity is significantly increased.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kokotailo, G.T., Lawton, S.L., Olson, D.H., and Meier, W.M.: Structure of synthetic zeolite ZSM-5. Nature 272, 437 (1978).CrossRefGoogle Scholar
2Olson, D.H., Kokotailo, G.T., Lawton, S.L., and Meier, W.M.: Crystal structure and structure-related properties of ZSM-5. J. Phys. Chem. 85, 2238 (1981).CrossRefGoogle Scholar
3Argauer, R.J., Kensington, M.D., Landolt, G.R., and Audubon, N.J.: Crystalline Zeolite ZSM-5 and Method of Preparing the Same. U.S., Patent No. 3702886, Mobil Co. (1972).Google Scholar
4Lin, J.C. and Chao, K.J.: Distribution of silicon-to-aluminium ratios in zeolite ZSM-5. J. Chem. Soc., Faraday Trans. I 82, 2645 (1986).CrossRefGoogle Scholar
5Bell, A.T.: NMR applied to zeolite synthesis. Colloids Surf., A: Physicochem. Eng. Aspect. 158, 221 (1999).CrossRefGoogle Scholar
6Baerlocher, Ch., McCusker, L.B., and Olson, D.H.: Atlas of Zeolite Framework Types, 6th Ed. (Elsevier, Amsterdam, 2007).Google Scholar
7van, H.Koningsveld: Compendium of Zeolite Framework Types (Elsevier, Amsterdam, 2007).Google Scholar
8Hunger, M., Freude, D., Fenzke, D., and Pfeifer, H.: H-1 solid-state NMR-studies of the geometry of bronsted acid sites in zeolites HZSM-5. Chem. Phys. Lett. 191, 391 (1992).CrossRefGoogle Scholar
9Bourgeatlami, E., Massiani, P., Direnzo, F., Espiau, P., Fajula, F., and Courieres, T.D.: Study of the state of aluminum in zeolitebeta. Appl. Catal. 72, 139 (1991).CrossRefGoogle Scholar
10Qiao, Y., Cao, G., and Chen, X.: Effects of gas molecules on nanofluidic behaviors. J. Am. Chem. Soc. 129, 2355 (2007).CrossRefGoogle ScholarPubMed
11Han, A. and Qiao, Y.: Infiltration pressure of a nanoporous liquid spring modified by an electrolyte. J. Mater. Res. 22, 644 (2007).CrossRefGoogle Scholar
12Han, A. and Qiao, Y.: Thermal effects on infiltration of a solubilitysensitive volume memory liquid. Philos. Mag. Lett. 87, 25 (2007).Google Scholar
13Han, A. and Qiao, Y.: Pressure induced infiltration of aqueous solutions of multiple promoters in a nanoporous silica. J. Am. Chem. Soc. 128, 10348 (2006).CrossRefGoogle Scholar
14Qiao, Y., Punyamurtula, V.K., Han, A., Kong, X., and Surani, F.B.: Temperature dependence of working pressure of a nanoporous liquid spring. Appl. Phys. Lett. 89, 251905 (2006).CrossRefGoogle Scholar
15Pabalan, R.T. and Bertetti, F.P.: Cation-exchange properties natural zeolites, in Natural Zeolites: Occurrence, Properties, Applications, Reviews in Mineralogy and Geochemistry, vol. 45, edited by Bish, D.L. and Ming, D.W. (The Mineralogical Society America and the Geochemical Society, 2001).Google Scholar
16Caputo, D. and Pepe, F.: Experiments and data processing of ion exchange equilibria involving Italian natural zeolites: A review. Microporous Mesoporous Mater. 105, 222 (2007).CrossRefGoogle Scholar
17Neuhoff, P.S. and Ruhl, L.S.: Mechanisms and geochemical significance of Si-Al substitution in zeolite solid solutions. Chem. Geol. 225, 373 (2006).CrossRefGoogle Scholar
18Karge, H.G. and Beyer, H.K.: Solid-State Ion-Exchange in Microporous and Mesoporous Materials (Springer, 2002).CrossRefGoogle Scholar
19Kucherov, A.V. and Slinkin, A.A.: Introduction of transition metal ions in cationic positions of high-silica zeolites by a solid state reaction. Interaction of copper compounds with H-mordenite or H-ZSM-5. Zeolites 6, 175 (1986).CrossRefGoogle Scholar
20Beyer, H.K., Karge, H.G., and Borbely, C.: Solid-state ion exchange in zeolites: Part I. Alkaline chlorides/ZSM-5. Zeolites 8, 79 (1988).CrossRefGoogle Scholar
21Seidel, A., Kampf, G., Schmidt, A., and Boddenberg, B.: Zeolite ZnY catalysts prepared by solid-state ion exchange. Catal. Lett. 51, 213 (1998).CrossRefGoogle Scholar
22Zanjanchi, M.A. and Ebrahimian, A.: Studies on the solid-state ion exchange of nickel ions into zeolites using DRS technique. J. Mol. Struct. 693, 211 (2004).CrossRefGoogle Scholar
23Louis, B. and Kiwi-Minsker, L.: Synthesis of ZSM-5 zeolite in fluoride media: An innovative approach to tailor both crystal size and acidity. Microporous Mesoporous Mater. 74, 171 (2004).CrossRefGoogle Scholar
24Lide, D.R.: CRC Handbook of Chemistry and Physics (CRC Press, 2007).Google Scholar
25Hartland, S.: Surface and Interface Tension (CRC Press, 2004).CrossRefGoogle Scholar
26Reviews in Mineralogy and Geochemistry, edited by Bish, D.L. and Ming, D.W. (Mineralogical Society of America and the Geochemical Society, Washington, DC, 2001), pp. 452–518.Google Scholar