Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T02:36:18.845Z Has data issue: false hasContentIssue false

Growth of electromigration-induced hillocks in Al interconnects

Published online by Cambridge University Press:  31 January 2011

J. A. Nucci
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraβe 3, D-70569 Stuttgart, Germany
A. Straub
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraβe 3, D-70569 Stuttgart, Germany
E. Bischoff
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraβe 3, D-70569 Stuttgart, Germany
E. Arzt
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraβe 3, D-70569 Stuttgart, Germany
C. A. Volkert
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstraβe 3, D-70569 Stuttgart, Germany
Get access

Abstract

Electromigration-induced hillock growth in polycrystalline Al segments was extensively investigated. Hillocks composed of columnar grains grew near the anode by epitaxial Al addition at the interface between the Al and underlying TiN layer, which pushed up the original Al film. The hillocks rotated away from their initial (111) out-of-plane orientation in a manner consistent with the physical rotation of the hillock surface. Wedgelike and rounded hillocks were observed, and their formation is explained by the interaction between grain extrusion and grain growth. Trends elucidated by review of both thermal- and electromigration-induced hillock studies can be explained by the mechanisms identified in this work.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Blech, I.A., J. Appl. Phys. 47, 1203 (1976).CrossRefGoogle Scholar
2.Mori, H., Okabayashi, H., and Komatsu, M., Thin Solid Films 300, 25 (1997).CrossRefGoogle Scholar
3.Buerke, A., Wendrock, H., Koetter, T., Menzel, S., Wetzig, K., and Glasow, A.V., in Materials Reliability in Microelectronics IX, edited by Volkert, C.A., Verbruggen, A.H., and Brown, D.D. (Mater. Res. Soc. Symp. Proc. 563, Warrendale, PA, 1999), p. 109.Google Scholar
4.Wang, P., Hwang, J., Chuang, A., Huang, F-S., Thin Solid Films 358, 292 (2000).CrossRefGoogle Scholar
5.Ericson, F., Kristensen, N., and Schweitz, J-A., J. Vac. Sci. Technol. B 9, 58 (1991).CrossRefGoogle Scholar
6.Gerth, D., Katzner, D., and Krohn, M., Thin Solid Films 208, 67 (1992).CrossRefGoogle Scholar
7.Martin, B.C., Tracy, C.J., Mayer, J.W., and Hendrickson, L.E., Thin Solid Films 271, 64 (1995).CrossRefGoogle Scholar
8.Kim, D-K., Heiland, B., Nix, W.D., Arzt, E., Deal, M.D., Plummer, J.D., Thin Solid Films 371, 278 (2000).CrossRefGoogle Scholar
9.Genin, F.Y. and Siekhaus, W.J., J. Appl. Phys. 79, 3561 (1996).CrossRefGoogle Scholar
10.Bo¨hm, J., Volkert, C.A., Mo¨nig, R., Balk, T.J., Arzt, E., J. Elect. Mater. 31, 45 (2002).CrossRefGoogle Scholar
11.Proost, J., Delaey, L., D’Haen, J., and Maex, K., J. Appl. Phys. 91, 9108 (2002).CrossRefGoogle Scholar
12.Gladkikh, A., Lereah, Y., Glickman, E., Karpovsky, M., Palevski, A., and Shubert, J., Appl. Phys. Lett. 66, 1214 (1995).CrossRefGoogle Scholar
13.Witt, C., Ph.D. dissertation, University of Stuttgart, Stuttgart, Germany (2000).Google Scholar
14.Takatsuija, H., Tsujimoto, K., Kuroda, K., and Saka, H., Thin Solid Films 343–344, 461 (1999).CrossRefGoogle Scholar
15.Schwarzer, R.A. and Gerth, D., J. Elect. Mater. 22, 607 (1993).CrossRefGoogle Scholar
16.Kim, D-K., Nix, W.D., Vinci, R.P., Deal, M.D., Plummer, J.D., J. Appl. Phys. 90, 781 (2001).CrossRefGoogle Scholar
17.Chang, C.Y. and Vook, R.W., Thin Solid Films 228, 205 (1993).CrossRefGoogle Scholar
18.Chaudhari, P., J. Appl. Phys. 45, 4339 (1974).CrossRefGoogle Scholar
19.Klinger, L.M., Levin, L., and Glickman, E.E., in Materials Reliability in Microelectronics V, edited by Oates, A.S., Filter, W.F., Rosenberg, R., Greer, A. Lindsay, and Gadepally, K. (Mater. Res. Soc. Symp. Proc. 391, Pittsburgh, PA, 1995), p. 271.Google Scholar
20.Glickman, E. and Nathan, M., Microel. Eng. 50, 329 (2000).CrossRefGoogle Scholar
21.Augur, R.A., Wolters, R.A.M., Schmidt, W., Dirks, A.G., and Kordic, S., J. Appl. Phys. 79, 3003 (1996).CrossRefGoogle Scholar
22.Straub, A., Ph.D. Dissertation, University of Stuttgart, Stuttgart, Germany (2000).Google Scholar
23.Blech, I.A. and Herring, C., Appl. Phys. Lett. 29, 131 (1976).CrossRefGoogle Scholar
24.Korhonen, M.A., Borgeson, P., Tu, K.N., and Li, C-Y., J. Appl. Phys. 73, 3790 (1993).CrossRefGoogle Scholar
25.Wang, P.C., Cargill, G.S., Noyan, I.C., and Hu, C-K., Appl. Phys. Lett. 72, 1296 (1998).CrossRefGoogle Scholar
26.Kononenko, O.V., Matveev, V.N., and Field, D.P., J. Mater. Res. 16, 2124 (2001).CrossRefGoogle Scholar
27.Jackson, M.S. and Li, C.Y., Acta. Metall. 30, 1993 (1982).CrossRefGoogle Scholar
28.Reed-Hill, R.E., Physical Metallurgy Principles, 2nd ed. (Litton, Monterey, CA, 1973), p. 195.Google Scholar
29.Thompson, C.V., J. Mech. Phys. Solids 44, 657 (1996).CrossRefGoogle Scholar
30.Genin, F.Y., J. Appl. Phys. 77, 5130 (1995).CrossRefGoogle Scholar
31.Nix, W.D., Metall. Trans. 20A, 2217 (1989).CrossRefGoogle Scholar
32.Arzt, E., Ashby, M.F., and Verrall, R.A., Acta. Metall. 31, 1977 (1983).CrossRefGoogle Scholar