Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T19:27:07.484Z Has data issue: false hasContentIssue false

Formation of chainlike structures in an Mn-89.7 wt%Sb alloy during isothermal annealing process in the semisolid state in a high magnetic field

Published online by Cambridge University Press:  31 January 2011

Qiang Wang*
Affiliation:
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110004, China
Jicheng He
Affiliation:
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110004, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This study is concerned with the investigation of the structural evolution occurring during isothermal annealing of an Mn-89.7 wt%Sb alloy in a high magnetic field in the semisolid state. The alloy specimens were isothermally annealed without and with an 11.5-T magnetic field for various annealing times. With the application of the magnetic field, the average characteristic radius of the primary MnSb particles increased with increasing annealing time. The primary MnSb particles were oriented with their c-plane parallel to the imposed field direction. Furthermore, the primary MnSb particles were found to align along the field direction and form chainlike structures eventually. These phenomena were attributed to the attraction and coalescence of the particles induced by the dipole–dipole interactions among them.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Liu, F., Sommer, F., Bos, C., and Mittemeijer, E.J.: Analysis of solid-state phase transformation kinetics: Models and recipes. Int. Mater. Rev. 52, 193 (2007).CrossRefGoogle Scholar
2Watanabe, T., Tsurekawa, S., Zhao, X., Zuo, L., and Esling, C.: A new challenge: Grain boundary engineering for advanced materials by magnetic field application. J. Mater. Sci. 41, 7747 (2006).Google Scholar
3Watanabe, T., Tsurekawa, S., Zhao, X., and Zuo, L.: Grain boundary engineering by magnetic field application. Scr. Mater. 54, 969 (2006).Google Scholar
4Feuchtwanger, J., Griffin, K., Huang, J-K., Bono, D., O'Handley, R.C., and Allen, S.M.: Mechanical energy absorption in Ni-Mn-Ga polymer composites. J. Magn. Magn. Mater. 272–276, 2038 (2004).CrossRefGoogle Scholar
5Feuchtwanger, J., Michael, S., Juang, J., Bono, D., O'Handley, R.C., Allen, S.M., Jenkins, C., Goldie, J., and Berkowitz, A.: Energy absorption in Ni-Mn-Ga-polymer composites. J. Appl. Phys. 93, 8528 (2003).CrossRefGoogle Scholar
6Farrell, D.E., Chandrasekhar, B.S., DeGuire, M.R., Fang, M-M., Kogan, V.G., Clem, J.R., and Finnemore, D.K.: Superconducting properties of aligned crystalline grains of Y1Ba2Cu3O7-d. Phys. Rev. B 36, 4025 (1987).CrossRefGoogle Scholar
7Livingston, J.D., Hart, H.R. Jr., , and Wolf, W.P.: Paramagnetic anisotropy in high-Tc superconductors. J. Appl. Phys. 64, 5806 (1988).CrossRefGoogle Scholar
8Lusnikov, A., Miller, L.L., McCallum, R.W., Mitra, S., Lee, W.C., and Johnston, D.C.: Mechanical and high-temperature (920 °C) magnetic field grain alignment of polycrystalline (Ho, Y) Ba2Cu3O7-d. J. Appl. Phys. 65, 3136 (1989).CrossRefGoogle Scholar
9Stassen, S., Rulmont, A., Ph. Vanderbemden, Vanderschueren, A., Gabelica, Z., Cloots, T., and Ausloos, M.: Magnetic texturing of bulk samples of the superconductor Bi2Sr2Ca0.8Dy0.2Cu2O8-y. J. Appl. Phys. 79, 553 (1996).CrossRefGoogle Scholar
10Suzuki, T.S. and Sakka, Y.: Preparation of oriented bulk 5 wt% Y2O3-AlN ceramics by slip casting in a high magnetic field and sintering. Scr. Mater. 52, 583 (2005).CrossRefGoogle Scholar
11Horii, S., Kumagai, T., Uchikoshi, T., Suzuki, T.S., Sakka, Y., Shimoyama, J., and Kishio, K.: Improvement of thermoelectric performance in magnetically c-axis-oriented bismuth-based cobaltites. Scr. Mater. 57, 333 (2007).Google Scholar
12Rango, P. de, Lees, M., Lejay, P., Sulpice, A., Tournier, R., Ingold, M., Germi, P., and Pernet, M.: Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature 349, 770 (1991).Google Scholar
13Yasuda, H., Ohnaka, I.,Yamamoto, Y., Wismogroho, A.S., Takezawa, N., and Kishio, K.: Formation of crystallographically aligned BiMn grains by semi-solid processing of rapidly solidified Bi-Mn alloys under a magnetic field. Mater. Trans. 44, 2207 (2003).CrossRefGoogle Scholar
14Yasuda, H., Ohnaka, I., Yamamoto, Y., Wismogroho, A.S., Takezawa, N., and Kishio, K.: Alignment of BiMn crystal orientation in Bi-20 at% Mn alloys by laser melting under a magnetic field. Mater. Trans. 44, 2550 (2003).Google Scholar
15Wu, C-Y., Li, S-Q., Sassa, K., Chino, K., Hattori, K., and Asai, S.: Theoretical analysis on crystal alignment of feeble magnetic materials under high magnetic field. Mater. Trans. 46, 1311 (2005).Google Scholar
16Morikawa, H., Sassa, K., and Asai, S.: Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field. Mater. Trans., JIM 39, 814 (1998).Google Scholar
17Li, X., Fautrelle, Y., and Ren, Z-M.: Effect of a high magnetic field on the microstructure in directionally solidified Al-12 wt%Ni alloy. J. Cryst. Growth 306, 187 (2007).CrossRefGoogle Scholar
18Wang, C-J., Wang, Q., Wang, Z-Y, Li, H-T., Nakajima, K., and He, J-C.: Phase alignment and crystal orientation of Al3Ni in Al-Ni alloy by imposition of a uniform high magnetic field. J. Cryst. Growth 310, 1256 (2008).Google Scholar
19Wang, Q., Liu, T., Gao, A., Zhang, C., Wang, C-J., and He, J-C.: A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient. Scr. Mater. 56, 1087 (2007).Google Scholar
20Hansen, M.: Constitution of Binary Alloys (McGraw-Hill, New York, 1958).CrossRefGoogle Scholar
21Seshu, V. Bai and Rama, K.V.S.Rao: Solid solutions of MnSb as recording media in optical memory applications. J. Appl. Phys. 55, 2167 (1984).CrossRefGoogle Scholar
22Marqusee, J.A.: Dynamics of late stage phase separations in two dimensions. J. Chem. Phys. 81, 976 (1984).CrossRefGoogle Scholar
23Enomoto, Y., Kawasaki, K., and Tokuyama, M.: The time dependence behavior of the Ostwald ripening for the finite volume fraction. Acta Metall. 35, 915 (1987).Google Scholar
24Seyhan, I., Ratke, L., Bender, W., and Woorhees, P.W.: Ostwald ripening of solid-liquid Pb-Sn dispersions. Metall. Mater. Trans. A 27, 2470 (1996).CrossRefGoogle Scholar
25Takajo, S., Kaysser, W.A., and Petzow, G.: Analysis of particle growth by coalescence during liquid phase sintering. Acta Metall. 32, 107 (1984).CrossRefGoogle Scholar
26Rowenhorst, D.J., Kuang, J.P., Thornton, K., and Voorhees, P.W.: Three-dimensional analysis of particle coarsening in high volume fraction solid-liquid mixtures. Acta Mater. 54, 2027 (2006).Google Scholar
27Limodin, N., Salvo, L., Suery, M., and DiMichiel, M.: In situ investigation by x-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al-15.8wt% Cu alloy. Acta Mater. 55, 3177 (2007).CrossRefGoogle Scholar
28Liu, T., Wang, Q., Zhang, H-F., Wang, K., Pang, X-J., and He, J-C.: Effects of high magnetic fields on the microstructures and grain boundaries in binary Al–Li alloy. J. Alloys Compd. 469, 258 (2009).CrossRefGoogle Scholar
29Mahalingam, K., Gu, B.P., Liedl, G.L., and Sanders, T.H. Jr.,: Coarsening of delta prime (Al//3Li) precipitaties in binary Al-Li alloys. Acta Metall. 35, 483 (1987).Google Scholar
30Courtney, T.H.: Microstructural evolution during liquid phase sintering. II. Microstructural coarsening. Metall. Trans. A 8, 685 (1977).Google Scholar
31Diepers, H-J., Beckermann, C., and Steinbach, I.: Simulation of convection and ripening in a binary alloy mush using the phasefield method. Acta Mater. 47, 3663 (1999).CrossRefGoogle Scholar
32Brailsford, A. and Wynblatt, P.: The dependence of Ostwald ripening kinetics on particle volume fraction. Acta Metall. 27, 489 (1979).CrossRefGoogle Scholar
33Marsh, S.P. and Glicksman, M.E.: Kinetics of phase coarsening in dense systems. Acta Mater. 44, 3761 (1996).Google Scholar
34Utech, H.P. and Flemings, M.C.: Elimination of solute banding in indium antimonide crystals by growth in a magnetic field. J. Appl. Phys. 35, 2021 (1966).Google Scholar
35Wirtz, D. and Fermigier, M.: One-dimensional patterns and wavelength selection in magnetic fluids. Phys. Rev. Lett. 72, 2294 (1994).CrossRefGoogle ScholarPubMed
36Martin, J.E., Venturini, E., Odinek, J., and Anderson, R.A.: Anisotropic magnetism in field-structured composites. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Topics 61, 2818 (2000).Google Scholar
37Zahn, K., Mendez-Alcaraz, J.M., and Maret, G.: Hydrodynamic interactions may enhance the self-diffusion of colloidal particles. Phys. Rev. Lett. 79, 175 (1997).Google Scholar
38Tierno, P. and Goedel, W.A.: Control of particle assisted wetting by an external magnetic field. J. Chem. Phys. 122, 094712 (2005).Google Scholar
39Molodov, D.A.: Grain boundary dynamics in high magnetic fields. Fundamentals and implications for materials processing. Mater. Sci. Forum 467-470, 697 (2004).CrossRefGoogle Scholar
40Sheikh-Ali, A.D., Molodov, D.A., and Garmestani, H.: Boundary migration in Zn bicrystal induced by a high magnetic field. Appl. Phys. Lett. 82, 3005 (2003).CrossRefGoogle Scholar
41Tsurekawa, S., Harada, K., Sasaki, T., Matsuzaki, T., and Watanabe, T.: Magnetic sintering of ferromagnetic metal powder compacts. Mater. Trans., JIM 41, 991 (2000).CrossRefGoogle Scholar
42Liu, T., Wang, Q., Gao, A., Zhang, C., Wang, C-J., and He, J-C.: Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients. Scr. Mater. 57, 992 (2007).Google Scholar