Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T16:00:21.591Z Has data issue: false hasContentIssue false

Fabrication of continuous ultrathin ferroelectric films by chemical solution deposition methods

Published online by Cambridge University Press:  31 January 2011

J. Ricote*
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
S. Holgado
Affiliation:
Escuela Politécnica Superior, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
Z. Huang
Affiliation:
Department of Materials, School of Applied Sciences, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
P. Ramos
Affiliation:
Departamento de Electrónica, Universidad de Alcalá, E-28871 Alcalá de Henares, Spain
R. Fernández
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
M.L. Calzada
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The integration of ferroelectrics in nanodevices requires firstly the preparation of high-quality ultrathin films. Chemical solution deposition is considered a rapid and cost-effective technique for preparing high-quality oxide films, but one that has traditionally been regarded as unsuitable, or at least challenging, for fabricating films with good properties and thickness below 100 nm. In the present work we explore the deposition of highly diluted solutions of pure and Ca-modified lead titanates to prepare ultrathin ferroelectric films, the thickness of which is controlled by the concentration of the precursor solution. The results show that we are able to obtain single crystalline phase continuous films down to 18 nm thickness, one of the lowest reported using these methods. Below that thickness, the films start to be discontinuous, which is attributed to a microstructural instability that can be controlled by an adequate tailoring of the processing conditions. The effect of the reduction of thickness on the piezoelectric behavior is studied by piezoresponse force microscopy. The results indicate that films retain a significant piezoelectric activity regardless of their low thickness, which is promising for their eventual integration in nanodevices, for example, as transducer elements in nanoelectromechanical systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Scott, J.F., de Araujo, C.A. Paz: Ferroelectric memories. Science 246, 1400 1989CrossRefGoogle ScholarPubMed
2Arimoto, Y., Ishiwara, H.: Current status of ferroelectric random-access memory. MRS Bull. 29, 823 2004CrossRefGoogle Scholar
3Trolier-McKinstry, S., Muralt, P.: Thin film piezoelectrics for MEMS. J. Electroceram. 12, 7 2004CrossRefGoogle Scholar
4Cho, Y., Hashimoto, S., Odagawa, N., Tanaka, K., Hiranaga, Y.: Realization of 10Tbit/in.2 memory density and subnanosecond domain switching time in ferroelectric data storage. Appl. Phys. Lett. 87, 232907 2005CrossRefGoogle Scholar
5Ekinci, K.L.: Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS). Small 1, 786 2005CrossRefGoogle ScholarPubMed
6Arlett, J.L., Maloney, J.R., Gudlewski, B., Muluneh, M., Roukes, M.L.: Self-sensing micro- and nanocantilevers with attonewton-scale force resolution. Nano Lett. 6, 1000 2006CrossRefGoogle Scholar
7Masmanidis, S.C., Karabalin, R.B., De Vlaminck, I., Borghs, G., Freeman, M.R., Roukes, M.L.: Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780 2007CrossRefGoogle ScholarPubMed
8Shaw, T.M., Trolier-McKinstry, S., McIntyre, P.C.: The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263 2000CrossRefGoogle Scholar
9Roelofs, A., Schneller, T., Szot, K., Waser, R.: Towards the limit of ferroelectric nanosized grains. Nanotechnology 14, 250 2003CrossRefGoogle Scholar
10Junquera, J., Ghosez, Ph.: Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506 2003CrossRefGoogle ScholarPubMed
11Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C.: Ferroelectricity in ultrathin perovskite films. Science 303, 1650 2004CrossRefGoogle Scholar
12Schwartz, R.W., Schneller, T., Waser, R.: Chemical solution deposition of electronic oxide films. C.R. Chim. 7, 433 2004CrossRefGoogle Scholar
13Miller, K.T., Lange, F.F., Marshall, D.B.: The instability of polycrystalline thin films: Experiment and theory. J. Mater. Res. 5, 151 1990CrossRefGoogle Scholar
14Seifert, A., Vojta, A., Speck, J.S., Lange, F.F.: Microstructural instability in single-crystal thin films. J. Mater. Res. 11, 1470 1996CrossRefGoogle Scholar
15Roelofs, A., Schneller, T., Szot, K., Waser, R.: Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett. 81, 5231 2002CrossRefGoogle Scholar
16Szafraniak, I., Harnagea, C., Scholz, R., Bhattacharyya, S., Hesse, D., Alexe, M.: Ferroelectric epitaxial nanocrystals obtained by a self-patterning method. Appl. Phys. Lett. 83, 2211 2003CrossRefGoogle Scholar
17Bühlmann, S., Muralt, P., Von Allmen, S.: Lithography-modulated self-assembly of small ferroelectric Pb(Zr,Ti)O3 single crystals. Appl. Phys. Lett. 84, 2614 2004CrossRefGoogle Scholar
18Clemens, S., Schneller, T., van der Hart, A., Peter, F., Waser, R.: Registered deposition of nanoscale ferroelectric grains by template-controlled growth. Adv. Mater. 17, 1357 2005CrossRefGoogle ScholarPubMed
19Calzada, M.L., Torres, M., Fuentes-Cobas, L.E., Mehta, A., Ricote, J., Pardo, L.: Ferroelectric self-assembled PbTiO3 perovskite nanostructures onto (100)SrTiO3 substrates from a novel microemulsion aided sol-gel preparation method. Nanotechnology 18, 375603 2007CrossRefGoogle Scholar
20Kijima, T., Ishiwara, H.: Si-substituted ultrathin ferroelectric films. Jpn. J. Appl. Phys., Part 2 41, L716 2002CrossRefGoogle Scholar
21Celinska, J., Joshi, V., Narayan, S., McMillan, L., de Araujo, C.A. Paz: Effects of scaling the film thickness on the ferroelectric properties of SrBi2Ta2O9 ultra thin films. Appl. Phys. Lett. 82, 3937 2003CrossRefGoogle Scholar
22Brennecka, G.L., Tuttle, B.A.: Fabrication of ultrathin film capacitors by chemical solution deposition. J. Mater. Res. 22, 2868 2007CrossRefGoogle Scholar
23Doyle, A.M., Rupprechter, G., Pfänder, N., Schlögl, R., Kirschhok, C.E.A., Martens, J.A., Freund, H-J.: Ultra-thin zeolite films prepared by spin-coating Silicalite-1 precursor solutions. Chem. Phys. Lett. 382, 404 2003CrossRefGoogle Scholar
24Hardy, A., Van Elshocht, S., D’Haen, J., Douthéret, O., De Gendt, S., Adelmann, C., Caymax, M., Conard, T., Witters, T., Bender, H., Richard, O., Heyns, M., D’Olieslaeger, M., Van Bael, M.K., Mullens, J.: Aqueous chemical solution deposition of ultrathin lanthanide oxide dielectric films. J. Mater. Res. 22, 3484 2007CrossRefGoogle Scholar
25Sigman, J., Brennecka, G.L., Clem, P.G., Tuttle, B.A.: Fabrication of perovskite-based high-value integrated capacitors by chemical solution deposition. J. Am. Ceram. Soc. 91, 1851 2008CrossRefGoogle Scholar
26González, A., Jiménez, R., Mendiola, J., Alemany, C., Calzada, M.L.: Ultrathin ferroelectric strontium bismuth tantalate films. Appl. Phys. Lett. 81, 2599 2002CrossRefGoogle Scholar
27Calzada, M.L., Jiménez, R., González, A., Mendiola, J.: Air-stable solutions for the low-temperature crystallization of strontium bismuth tantalate ferroelectric films. Chem. Mater. 13, 3 2001CrossRefGoogle Scholar
28Ricote, J., Holgado, S., Ramos, P., Calzada, M.L.: Piezoelectric ultrathin lead titanate films prepared by deposition of aquo-diol solutions. IEEE Trans. Ultrason. Ferroel. Freq. Control 53, 2299 2006CrossRefGoogle ScholarPubMed
29Phillips, N.J., Calzada, M.L., Milne, S.J.: Sol-gel-derived lead titanate films. J. Non-Cryst. Solids 147–148, 285 1992CrossRefGoogle Scholar
30Sirera, R., Calzada, M.L.: Multicomponent solutions for the deposition of modified lead titanate films. Mater. Res. Bull. 30, 11 1995CrossRefGoogle Scholar
31Huang, Z.: Combining Ar ion milling with FIB lift-out techniques to prepare high quality site-specific TEM samples. J. Microsc. 215, 219 2004CrossRefGoogle ScholarPubMed
32Alexe, M., (Eds), A. Gruverman: Nanoscale Characterisation of Ferroelectric Materials: Scanning-Probe Microscopy Approach Springer-Verlag Berlin 2003Google Scholar
33Meyerhofer, D.: Characteristics of resist films produced by spinning. J. Appl. Phys. 47, 3993 1978CrossRefGoogle Scholar
34Walsh, C.B., Franses, E.I.: Ultrathin PMMA films spin-coated from toluene solutions. Thin Solid Films 429, 71 2003CrossRefGoogle Scholar
35Bretos, I.: Low-toxic chemical solution deposition methods for the preparation of multifunctional Pb1−xCaxTiO3 thin films. Ph.D. Thesis., Univ. Autónoma de Madrid (Spain). September, 2006Google Scholar
36Calzada, M.L., Malic, B., Sirera, R., Kosec, M.: Thermal decomposition chemistry of modified lead-titanate aquo-diol gels used for the preparation of thin films. J. Sol-Gel Sci. Technol. 23, 221 2002CrossRefGoogle Scholar
37Hasenkox, U., Hoffmann, S., Waser, R.: Influence of the precursor chemistry on the formation of MTiO3 (M = Ba, Sr) ceramic thin films. J. Sol-Gel Sci. Technol. 12, 67 1998CrossRefGoogle Scholar
38Bretos, I., Ricote, J., Jiménez, R., Mendiola, J., Riobóo, R.J. Jiménez, Calzada, M.L.: Crystallisation of Pb1−xCaxTiO3 ferroelectric thin films as a function of the Ca2+ content. J. Eur. Ceram. Soc. 25, 2325 2005CrossRefGoogle Scholar
39Lian, L., Sotos, N.R.: Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films. J. Appl. Phys. 87, 3941 2000CrossRefGoogle Scholar
40Park, G.T., Park, C.S., Choi, J.J., Lee, J.W., Kim, H.E.: Effects of thickness on piezoelectric properties of highly oriented lead zirconate titanate films. J. Am. Ceram. Soc. 89, 2314 2006CrossRefGoogle Scholar
41Ricote, J., Poyato, R., Algueró, M., Pardo, L., Calzada, M.L., Chateigner, D.: Texture development in modified lead titanate thin films obtained by chemical solution deposition on silicon-based substrates. J. Am. Ceram. Soc. 86, 1571 2003CrossRefGoogle Scholar
42Ricote, J., Chateigner, D., Morales, M., Calzada, M.L., Wiemer, C.: Application of the x-ray combined analysis to the study of lead titanate based ferroelectric thin films. Thin Solid Films 450, 128 2004CrossRefGoogle Scholar
43Zhong, S., Alpay, S.P., Nagarajan, V.: Piezoelectric and dielectric tunabilities of ultrathin ferroelectric heterostructures. J. Mater. Res. 21, 1600 2006CrossRefGoogle Scholar
44Kalinin, S.V., Karapetian, E., Kachanov, M.: Nanoelectromechanics of piezoresponse force microscopy. Phys. Rev. B 70, 184101 2004CrossRefGoogle Scholar