Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T13:00:58.012Z Has data issue: false hasContentIssue false

Electronic states in heavily Li-doped graphite nanoclusters

Published online by Cambridge University Press:  31 January 2011

M. Yagi
Affiliation:
Department of Electronics Engineering, University of Electro-Communication, Chofu, 182–8585 Tokyo, Japan
R. Saito
Affiliation:
Department of Electronics Engineering, University of Electro-Communication, Chofu, 182–8585 Tokyo, Japan
T. Kimura
Affiliation:
Department of Electronics Engineering, University of Electro-Communication, Chofu, 182–8585 Tokyo, Japan
G. Dresselhaus
Affiliation:
Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. S. Dresselhaus
Affiliation:
Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Negative ion states for Li atoms are found in graphite nanoclusters heavily doped with lithium using a semiempirical calculational method. These calculations identify a quasi-stable site for a negative Li ion near the terminated hydrogen atoms, and this site becomes very stable in the presence of the Coulomb interaction between Li ions. The total charge transfer from Li ions to the graphite clusters does not depend on the number of Li atoms per cluster but rather on the relative geometries of the Li atoms on the cluster. The relationship of these findings to the findings in the 7Li nuclear magnetic resonance experiments and to the performance of Li secondary batteries is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

References

REFERENCES

1.Sato, K., Noguchi, M., Demachi, A., Oki, N., and Endo, M., Science 264, 556 (1994).CrossRefGoogle Scholar
2.Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H.W., J. Phys. Chem. Solids 54, 1841 (1994).CrossRefGoogle Scholar
3.Yata, S., Hato, Y., Kinoshita, H., Ando, N., Anekawa, A., Hashimoto, T., Yamaguchi, M., Tanaka, K., and Yamabe, T., Synth. Met. 73, 273 (1995).CrossRefGoogle Scholar
4.Tatsumi, K., Cornard, J., Nakahara, M., Menu, S., Lauginie, P., Sawada, Y., and Ogumi, Z., Chem. Commun. 687 (1997).CrossRefGoogle Scholar
5.Zhou, P., Papanek, P., Bindra, C., Lee, R., and Fischer, J.E., J. Power Sources 68, 296 (1997).CrossRefGoogle Scholar
6.Yamazaki, S., Hashimoto, T., Iriyama, T., Mori, Y., Shiroki, H., and Tamura, N., J. Mol. Struct. 441, 165 (1998).CrossRefGoogle Scholar
7.Wang, S., Matsui, H., Tamamura, H., Matsumura, Y., and Yamabe, T., Phys. Rev. B58, 8163 (1998).CrossRefGoogle Scholar
8.Bodarenko, G.N., Nalimova, V.A., Fateev, O.V., Guerard, D., and Semenenko, K.N., Carbon 36, 1107 (1988).CrossRefGoogle Scholar
9.Nalimova, V.A., Avdeev, V.V., and Semenenko, K.N., Mater. Sci. Forum 91–93, 11 (1992).CrossRefGoogle Scholar
10.Belash, I.T., Bronnikov, A.D., Zharikov, O.V., and Pal'nichenko, A.V., Solid State Commun. 69, 921 (1989).CrossRefGoogle Scholar
11.Tanaka, K., Yata, S., and Yamabe, T., Synth. Met. 71, 2147 (1995).CrossRefGoogle Scholar
12.Yata, S., Kinoshita, H., Komori, M., Ando, N., Kashiwamura, T., Harada, T., Tanaka, K., and Yamabe, T., Synth. Met. 62, 153 (1994).CrossRefGoogle Scholar
13.Endo, M., Nishimura, K., Takahashi, T., Takeuchi, K., and Dresselhaus, M.S., J. Phys. Chem. Solids 57, 725 (1996). ISIC 8: Conference Proceedings, Vancouver, BC, May 1995.CrossRefGoogle Scholar
14.Fung, A.W.P, Wang, Z.H., Dresselhaus, M.S., Dresselhaus, G., Pekala, R.W., and Endo, M., Phys. Rev. B 49, 17325 (1994).CrossRefGoogle Scholar
15.Peled, E., Menachem, C., Bar-Tow, D., and Melman, A., J. Electrochem. Soc. 143, L4 (1996).CrossRefGoogle Scholar
16.Ein-Eli, Y. and Koch, V.R., J. Electrochem. Soc. 144, 2968 (1997).CrossRefGoogle Scholar
17.Nakada, K., Fujita, M., Dresselhaus, G., and Dresselhaus, M.S., Phys. Rev. B 54, 17954 (1996).CrossRefGoogle Scholar
18.Nakadaira, M., Saito, R., Kimura, T., Dresselhaus, G., and Dresselhaus, M.S., J. Mater. Res. 12, 1367 (1997).CrossRefGoogle Scholar
19.Stewart, J.J.P, Semiempirical quantum chemistry library (Fujitsu Limited, Tokyo, Japan, 1993).Google Scholar
20.Saito, R., Yagi, M., Kimura, T., Dresselhaus, G., and Dresselhaus, M.S., J. Phys. Chem. Solids 60, 715 (1999).CrossRefGoogle Scholar