Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T00:29:02.310Z Has data issue: false hasContentIssue false

Effects of loading rate and temperature on tensile behavior of orthogonal three-dimensional woven Si–Ti–C–O fiber/Si–Ti–C–O matrix composites

Published online by Cambridge University Press:  01 October 2004

Shijie Zhu*
Affiliation:
Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
Takashi Gomyou
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, Chofu-shi, Tokyo 182-8585, Japan
Yasuo Ochi
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, Chofu-shi, Tokyo 182-8585, Japan
Toshio Ogasawara
Affiliation:
Advanced Composite Evaluation Technology Center, Institute of Space Technology and Aeronautics, Mitaka-shi, Tokyo 181-0015, Japan
Takashi Ishikawa
Affiliation:
Advanced Composite Evaluation Technology Center, Institute of Space Technology and Aeronautics, Mitaka-shi, Tokyo 181-0015, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Effects of loading rate and temperature on tensile behavior have been studied in air using two kinds of orthogonal three-dimensional woven Si–Ti–C–O fiber-reinforced Si–Ti–C–O matrix composites, processed by polymer infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI). Since the interphase and porosity of the two composites are controlled in as similar a manner as possible, the effect of matrix processing method is understood. The strength of the PIP composite is greater than that of the CVI composite at room temperature, but they are almost the same at high temperatures. It was found that the PIP composite is more sensitive to loading rate than the CVI composite due to more glassy phases in the PIP composite.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Evans, A.G. and Zok, F.W.: The physics and mechanics of brittle matrix composites. J. Mater. Sci. 29, 3857 (1994).CrossRefGoogle Scholar
2Evans, A.G.: Design and life prediction issues for high-temperature engineering ceramics and their composites. Acta Mater . 45, 23 (1997).CrossRefGoogle Scholar
3Rebillat, F., Lamon, J., Naslain, R., Lara-Curzio, E., Ferber, M.K. and Besmann, T.M.: Properties of multilayered interphases in SiC/SiC chemical-vapor-infiltrated composites with “weak” and “strong” interfaces. J. Am. Ceram Soc . 81, 2315 (1998).CrossRefGoogle Scholar
4Kagawa, Y.: Thermal-shock damage in 2D SiC/SiC composite reinforced with woven SiC fibers. Compos. Sci. Technol . 57, 607 (1997).CrossRefGoogle Scholar
5Zhu, S., Mizuno, M., Kagawa, Y. and Mutoh, Y.: Monotonic tension, fatigue and creep behavior of SiC-fiber reinforced SiC matrix composites: A review. Compos. Sci. Technol . 59, 833 (1999).CrossRefGoogle Scholar
6Staehler, J.M. and Zawada, L.P.: Performance of four ceramic matrix composite divergent lap inserts following ground testing on an F110 turbofan engine. J. Am. Ceram. Soc . 83, 1727 (2000).CrossRefGoogle Scholar
7Brewer, D.: HSR/EPM combustor materials development program. Mater. Sci. Eng. A 261, 284 (1999).CrossRefGoogle Scholar
8McMahon, T.J.: Advanced hot gas filter development. Ceram. Eng. Sci. Proc . 21, 47 (2000).CrossRefGoogle Scholar
9Gadow, R.: Current status and future prospects of CMC brake components and their manufacturing technologies. Ceram. Eng. Sci. Proc . 21, 15 (2000).CrossRefGoogle Scholar
10Wang, Z.G., Laird, C., Hashin, Z., Rosen, W. and Yen, C-F.: Mechanical behaviour of a cross-weave ceramic matrix composite, Part I. Tensile and compressive loading. J. Mater. Sci. 26, 4751 (1991).CrossRefGoogle Scholar
11Aubard, X., Lamon, J. and Allix, O.: Model of the nonlinear mechanical behavior of 2D SiC-SiC chemical vapor infiltration composites. J. Am. Ceram. Soc . 77, 2118 (1994).CrossRefGoogle Scholar
12Evans, A.G., Domergue, J-M. and Vagaggini, E.: Methodology for relating the tensile constitutive behavior of ceramic-matrix composites to constituent properties. J. Am. Ceram. Soc . 77, 1425 (1994).CrossRefGoogle Scholar
13Vagaggini, E., Domergue, J-M. and Evans, A.G.: Relationships between hysteresis measurements and the constituent properties: I, theory. J. Am. Ceram. Soc . 78, 2709 (1995).CrossRefGoogle Scholar
14Domergue, J-M., Vagaggini, E. and Evans, A.G.: Relationships between hysteresis measurements and the constituent properties: II, experimental studies on unidirectional materials. J. Am. Ceram. Soc . 78, 2721 (1995).CrossRefGoogle Scholar
15Domergue, J-M., Heredia, F.E. and Evans, A.G.: Hysteresis loops and the inelastic deformation of 0/90 ceramic-matrix composites. J. Am. Ceram. Soc . 79, 161 (1996).CrossRefGoogle Scholar
16Goto, K. and Kagawa, Y.: Fracture behavior and toughness of a plane-woven SiC fiber-reinforced SiC matrix composite. Mater. Sci. Eng. A 211, 72 (1996).CrossRefGoogle Scholar
17McNulty, J.C., Zok, F.W., Genin, G.M. and Evans, A.G.: Notch-sensitivity of fiber-reinforced ceramic-matrix composites: effects of inelastic straining and volume-dependent strength. J. Am. Ceram. Soc . 82, 1217 (1999).CrossRefGoogle Scholar
18Heathcote, J.A., Gong, X-Y., Yang, J.Y., Ramamurty, U. and Zok, F.W.: In-plane mechanical properties of an all-oxide ceramic composite. J. Am. Ceram. Soc . 82, 2721 (1999).CrossRefGoogle Scholar
19Rebillat, F., Lamon, J. and Guette, A.: The concept of a strong interface applied to SiC/SiC composites with a BN interphase. Acta Mater . 48, 4609 (2000).CrossRefGoogle Scholar
20Betrand, S., Pailler, R. and Lamon, J.: SiC/SiC minicomposites with nanoscale multilayered fibre coatings. Compos. Sci. Tech nol. 61, 363 (2001).CrossRefGoogle Scholar
21Berbon, M.Z., Rugg, K.L., Dadkhah, M.S. and Marshall, D.B.: Effect of weave architecture on tensile properties and local strain heterogeneity in thin-sheet C-Si composites. J. Am. Ceram. Soc . 85, 2039 (2002).CrossRefGoogle Scholar
22Mamiya, T., Kakisawa, H., Liu, H., Zhu, S. and Kagawa, Y.: Tensile damage evolution and notch sensitivity of Al2O3 fiber-ZrO2 matrix minicomposite-reinforced Al2O3 matrix composites. Mater. Sci. Eng. A 325, 406 (2002).CrossRefGoogle Scholar
23Sorensen, B.F. and Holmes, J.W.: Effect of loading rate on the monotonic tensile behavior of a continuous-fiber-reinforced glass-ceramic matrix composite. J. Am. Ceram. Soc . 79, 313 (1996).CrossRefGoogle Scholar
24Zhu, S., Cao, J., Mizuno, M. and Kagawa, Y.: Effect of loading rate and temperature on monotonic tensile behavior in an enhanced SiC/SiC composite. Scripta. Mater . 51, 1400 (2004).Google Scholar
25Yasmin, A. and Bowen, P.: Fracture behavior of cross-ply Nicalon/CAS-II glass-ceramic matrix composite laminate at room and elevated temperatures. Composites Part A 33, 1209 (2002).CrossRefGoogle Scholar
26Lipetzky, P., Dvorak, G.J. and Stoloff, N.S.: Tensile properties of a SiCf/SiC composite. Mater. Sci. Eng. A 216, 11 (1996).CrossRefGoogle Scholar
27Mizuno, M., Zhu, S., Nagano, Y., Sakaida, Y., Kagawa, Y. and Watanabe, M.: Cyclic fatigue behavior of SiC/SiC composite at room and high temperatures. J. Am. Ceram. Soc . 79, 3065 (1996).CrossRefGoogle Scholar
28Zhu, S., Mizuno, M., Nagano, Y., Kagawa, Y. and Kaya, H.: Tensile creep behavior of SiC-fiber/SiC composite at elevated temperatures. Compos. Sci. Technol . 57, 1629 (1997).CrossRefGoogle Scholar
29Zhu, S., Mizuno, M., Kagawa, Y., Cao, J., Nagano, Y. and Kaya, H.: Creep and fatigue behavior of SiC-fiber/SiC composite at high temperatures. Mater. Sci. Eng. A 225, 69 (1997).CrossRefGoogle Scholar
30Zhu, S., Mizuno, M., Nagano, Y., Cao, J., Kagawa, Y. and Kaya, H.: Creep and fatigue behavior of Enhanced SiC/SiC composite at high temperatures. J. Am. Ceram. Soc . 81, 2269 (1998).CrossRefGoogle Scholar
31Zhu, S., Mizuno, M., Nagano, Y., Cao, J., Kagawa, Y. and Kaya, H.: Creep and fatigue behavior of Hi-Nicalon SiC/SiC composite at high temperatures. J. Am. Ceram. Soc . 82, 2269 (1999).Google Scholar
32Mamiya, T., Zhu, S. and Kagawa, Y.: Application of Dielectric Properties to noncontact damage detection for continuous fiber-ceramic-matrix composites. Ceram. Eng. Sci. Proc . 22, 717 (2001).CrossRefGoogle Scholar
33Kaneko, Y., Mamiya, T., Mizuno, M., Zhu, S., Kagawa, Y. and Ochi, Y. In Ceramic Materials and Components for Engines, edited by Heinrich, J.G. and Ardinger, F. (Wiley-VCH, Weinheim, Germany, 2001), p. 233.CrossRefGoogle Scholar
34Ishikawa, T., Bansaku, K., Watanabe, N., Nomura, Y., Shibuya, M. and Hirokawa, T.: Experimental stress/strain behavior of SiC-matrix composites reinforced with Si–Ti–C–O fibers and estimation of matrix elastic modulus. Compos. Sci. Technol . 58, 51 (1998).CrossRefGoogle Scholar
35Ogasawara, T., Ishikawa, T., Ito, H., Watanabe, N. and Davies, I.J.: Multiple cracking and tensile behavior for an orthogonal 3-D woven Si–Ti–C–O fiber / Si–Ti–C–O matrix composite. J. Am. Ceram. Soc . 84, 1565 (2001).CrossRefGoogle Scholar
36Ogasawara, T., Ishikawa, T., Ohsawa, Y., Ochi, Y. and Zhu, S.: Tensile creep behavior and thermal stability of orthogonal 3-D woven Tyranno ZMI fiber /Si–Ti–C–O matrix composites. J. Am. Ceram. Soc . 85, 393 (2002).CrossRefGoogle Scholar
37Sherwood, W.J.: CMCs come down to earth. Am. Ceram. Soc. Bull . 82, 25 (2003).Google Scholar
38 ASTM Standard Practice C1275-00, American Society for Testing and Materials, West Conshohocken, PA, 2000.Google Scholar
39Curtin, W.A.: Theory of mechanical properties of ceramic-matrix composites. J. Am. Ceram. Soc . 74, 2837 (1991).CrossRefGoogle Scholar
40Curtin, W.A.: In situ fiber strengths in ceramic-matrix composites from fracture mirrors. J. Am. Ceram. Soc . 77, 1075 (1994).CrossRefGoogle Scholar
41Curtin, W.A., Ahn, B.K. and Takeda, N.: Modelling brittle and tough stress-strain behavior in unidirectional ceramic-matrix composites. Acta Mater . 46, 3409 (1998).CrossRefGoogle Scholar
42Morscher, G.N., Yun, H.M., DiCarlo, J.A. and Thomas-Ogbuji, L.: Effect of a boron nitride interphase that debonds between the interphase and the matrix in SiC composites. J. Am. Ceram. Soc . 87, 104 (2004).CrossRefGoogle Scholar
43Morscher, G.N. and Cawley, J.D.: Intermediate temperature strength degradation in SiC/SiC composites. J. Eur. Ceram. Soc . 22, 2777 (2002).CrossRefGoogle Scholar
44Morscher, G.N. and Martinez-Fernandez, J.: Fiber effects on minicomposite mechanical properties for several silicon carbide fiber-chemically vapor-infiltrated silicon carbide matrix systems. J. Am. Ceram. Soc . 82, 145 (1999).CrossRefGoogle Scholar
45Celemin, J.A., Pastor, J.Y., Llorca, J. and Elices, M.: Mechanical behavior at 20° and 1200° C of Nicalon-silicon-carbide-fiber-reinforced alumina-matrix composites. J. Am. Ceram. Soc . 80, 2569 (1997).CrossRefGoogle Scholar
46Singh, D., Singh, J.P. and Wheeler, M.J.: Mechanical behavior of SiC(f)/SiC composites and correlation to in situ fiber strength at room and elevated temperatures. J. Am. Ceram. Soc . 79, 591 (1996).CrossRefGoogle Scholar