Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T00:05:18.576Z Has data issue: false hasContentIssue false

Effect of Ni Substitution on the Structure and Photocatalytic Activity of InTaO4 Under Visible Light Irradiation

Published online by Cambridge University Press:  31 January 2011

Zhigang Zou*
Affiliation:
Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
Jinhua Ye
Affiliation:
Materials Engineering Laboratory (MEL), National Institute for Materials Science (NIMS), 1–2-1 Sengen, Tsukuba, Ibaraki 305–0047, Japan
Hironori Arakawa*
Affiliation:
Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
*
a)Address all correspondence to this author. e-mail: [email protected] or [email protected]
a)Address all correspondence to this author. e-mail: [email protected] or [email protected]
Get access

Abstract

The effect of Ni substitution on the structure and photocatalytic H2 and O2 evolutions of InTaO4 under visible light irradiation (λ > 420 nm) from aqueous CH3OH/H2O and AgNO3/H2O solutions were investigated. The photocatalysts were prepared by the solid-state reaction method and characterized by powder x-ray diffraction and Rietveld structure refinement. These photocatalysts crystallize in the same wolframite structure, but lattice parameters decrease with increase of x in In1−xNixTaO4 (0 ≤x ≤ 0.2). The photocatalytic activity changed with the variation of x in In1−xNixTaO4and the photocatalyst at x = 0.1 showed the highest activity, which increased 8 times compared with nonsubstituted photocatalyst.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Honda, K. and Fujishima, A., Nature 238, 37 (1972).Google Scholar
2.Kawai, T. and Sakata, T., Nature 286, 474 (1980).CrossRefGoogle Scholar
3.Geoffrey, B.S. and Thomas, E.M., J. Phys. Chem. B. 101, 2508 (1997).Google Scholar
4.Kudo, A., Omori, K., and Kato, H., J. Am. Chem. Soc. 121, 11459 (1999).CrossRefGoogle Scholar
5.Yoshimure, J., Ebina, Y., Kondo, J., and Domen, K., K. J. Phys. Chem. 97, 1970 (1993).CrossRefGoogle Scholar
6.Kudo, A. and Mikami, I., Chem. Lett. 1027 (1998).Google Scholar
7.Kudo, A., Ueda, K., Kato, H., and Mikami, I., Catal. Lett. 53, 229 (1998).CrossRefGoogle Scholar
8.Kudo, A., Omiori, K., and Kato, H., J. Am. Chem. Soc. 121, (1999) 11459.CrossRefGoogle Scholar
9.Zou, Z., Ye, J., and Arakawa, H., Chem. Phys. Lett . 332, 271 (2000).CrossRefGoogle Scholar
10.Zou, Z., Ye, J., Oka, K., and Nishihara, Y., Phys. Rev. Lett. 80, 1074 (1998).CrossRefGoogle Scholar
11.Zou, Z., Ye, J., and Arakawa, H., Chem. Phys. Lett. 333, 57 (2001).CrossRefGoogle Scholar
12.Kim, H.G., Hwang, D.W., Kim, J., Kim, Y.G., and Lee, J., Chem. Commun. 1077 (1999).Google Scholar
13.Zou, Z., Ye, J., Abe, R., and Arakawa, H., Catal. Lett. 68, 235 (2000).CrossRefGoogle Scholar
14.Amy, L.L., Guangqan, L., John, T., and Yates, J.T. Jr., Chem. Rev. 95, 735 (1995).Google Scholar
15.Tada, H., Hattori, A., Tokihisa, Y., Imai, K., Tohee, N., and Ito, S., J. Phys. Chem. B. 104, 4585 (2000).CrossRefGoogle Scholar
16.Izumi, F.J., Crystallogr. Assoc. Jpn. 27, 23 (1985).CrossRefGoogle Scholar
17.Xu, J., Emge, T., Ramanujachary, V.K., Hohn, P., and Greenblatt, M., J. Solid State Chem. 125, 192 (1996).CrossRefGoogle Scholar
18.Zou, Z., Ye, J., and Arakawa, H., Solid State Comm. 116, 259 (2000).CrossRefGoogle Scholar
19.Blasse, G. and Brixner, L.H., Mater. Res. Bull. 24, 363 (1989).CrossRefGoogle Scholar
20.Srivastsva, A.M. and Ackerman, J.F., J. Solid State Chem. 134, 187 (1997).CrossRefGoogle Scholar
21.Dare-Edwards, M.P., Goodenough, J.B., Hamnett, A., and Nicholson, N.D., J. Chem. Soc., Faraday Trans. 77, 643 (1981).CrossRefGoogle Scholar
22.Qadri, S.B., Kim, H., and Khan, H.R., J. Mater. Res. 15, 21 (2000).CrossRefGoogle Scholar
23.Kraeutler, B. and Bard, A.J., J. Am. Chem. Soc. 100, 4317 (1978).CrossRefGoogle Scholar