Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T06:02:02.090Z Has data issue: false hasContentIssue false

Characterization of amorphous zinc tin oxide semiconductors

Published online by Cambridge University Press:  12 June 2012

Jaana S. Rajachidambaram
Affiliation:
School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331
Shail Sanghavi
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
Ponnusamy Nachimuthu
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
Vaithiyalingam Shutthanandan
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
Tamas Varga
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
Brendan Flynn
Affiliation:
School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331
Suntharampillai Thevuthasan
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
Gregory S. Herman*
Affiliation:
School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Amorphous zinc tin oxide (ZTO) was investigated to determine the effect of deposition and postannealing conditions on film structure, composition, surface contamination, and thin-film transistor (TFT) performance. X-ray diffraction results indicated that the ZTO films remain amorphous even after annealing to 600 °C. Rutherford backscattering spectrometry indicated that the bulk Zn:Sn ratio of the sputter-deposited films were slightly tin rich compared to the composition of the ceramic sputter target. X-ray photoelectron spectroscopy indicated that residual surface contamination depended strongly on the sample postannealing conditions where water, carbonate, and hydroxyl species were adsorbed to the surface. Electrical characterization of ZTO TFTs indicated that the best devices had mobilities of 17 cm2/Vs, threshold voltages of −1.5 V, subthreshold slopes of 0.9 V/dec, turn-on voltages of −12 V, and on-to-off ratio of >107. Annealing ZTO in vacuum assisted in the removal of adsorbed species, which may reduce defects in the films and improve device performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).CrossRefGoogle ScholarPubMed
2.Hosono, H.: Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 352, 851 (2006).CrossRefGoogle Scholar
3.Chiang, H.Q., Wager, J.F., Hoffman, R.L., Jeong, J., and Keszler, D.A.: High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86, 013503 (2005).CrossRefGoogle Scholar
4.Hoffman, R.L.: Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors. Solid-State Electron. 50, 784 (2006).CrossRefGoogle Scholar
5.Seo, S., Choi, C., Hwang, Y., and Bae, B.: High performance solution-processed amorphous zinc tin oxide thin film transistor. J. Phys. D: Appl. Phys. 42, 035106 (2009).CrossRefGoogle Scholar
6.Hong, D., Chiang, H.Q., and Wager, J.F.: Zinc tin oxide thin-film transistors via reactive sputtering using a metal target. J. Vac. Sci. Technol., B 24, L23 (2006).CrossRefGoogle Scholar
7.Hong, D. and Wager, J.F.: Passivation of zinc–tin–oxide thin-film transistors. J. Vac. Sci. Technol., B 23, L25 (2005).CrossRefGoogle Scholar
8.Chang, Y.J., Lee, D.H., Herman, G.S., and Chang, C.H.: High-performance, spin-coated zinc tin oxide thin-film transistors. Electrochem. Solid-State Lett. 10, H135 (2007).CrossRefGoogle Scholar
9.Jeong, J.K., Jeong, J.H., Yang, H.W., Park, J.S., Mo, Y.G., and Kim, H.D.: High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Appl. Phys. Lett. 91, 113505 (2007).CrossRefGoogle Scholar
10.McDowell, M.G. and Hill, I.G.: Influence of channel stoichiometry on zinc indium oxide thin-film transistor performance. IEEE Trans. Electron Devices 56, 346 (2009).CrossRefGoogle Scholar
11.Kim, M.G., Kim, H.S., Ha, Y.G., He, J., Kanatzidis, M.G., Facchetti, A., and Marks, T.J.: High-performance solution-processed amorphous zinc-indium-tin oxide thin-film transistors. J. Am. Chem. Soc. 132, 10352 (2010).CrossRefGoogle ScholarPubMed
12.Satoh, K., Kakehi, Y., Okamoto, A., Murakami, S., Uratani, F., and Yotsuya, T.: Influence of oxygen flow ratio on properties of Zn2SnO4 thin films deposited by RF magnetron sputtering. Jpn. J. Appl. Phys., Part 2 44, L34 (2005).CrossRefGoogle Scholar
13.Dutta, S. and Dodabalapur, A.: Zinc tin oxide thin film transistor sensor. Sens. Actuators, B 143, 50 (2009).CrossRefGoogle Scholar
14.Jackson, W.B., Hoffman, R.L., and Herman, G.S.: High-performance flexible zinc tin oxide field-effect transistors. Appl. Phys. Lett. 87, 193503 (2005).CrossRefGoogle Scholar
15.McDowell, M.G., Sanderson, R.J., and Hill, I.G.: Combinatorial study of zinc tin oxide thin-film transistors. Appl. Phys. Lett. 92, 013502 (2008).CrossRefGoogle Scholar
16.Cheong, W.S., Yoon, S.M., Shin, J.H., and Hwang, C.S.: Combinatorial approach to the fabrication of zinc-tin-oxide transparent thin-film transistors. J. Korean Phys. Soc. 54, 544 (2009).CrossRefGoogle Scholar
17.Jayaraj, M.K., Saji, K.J., Nomura, K., Kamiya, T., and Hosono, H.: Optical and electrical properties of amorphous zinc tin oxide thin films examined for thin film transistor application. J. Vac. Sci. Technol., B 26, 495 (2008).CrossRefGoogle Scholar
18.Satoh, K., Kakehi, Y., Okamoto, A., Murakami, S., Moriwaki, K., and Yotsuya, T.: Electrical and optical properties of Al-doped ZnO–SnO2 thin films deposited by RF magnetron sputtering. Thin Solid Films 516, 5814 (2008).CrossRefGoogle Scholar
19.Görrn, P., Lehnhardt, M., Riedl, T., and Kowalsky, W.: The influence of visible light on transparent zinc tin oxide thin film transistors. Appl. Phys. Lett. 91, 193504 (2007).CrossRefGoogle Scholar
20.Seo, S., Hwang, Y.H., and Bae, B.S.: Postannealing process for low temperature processed sol–gel zinc tin oxide thin film transistors. Electrochem. Solid-State Lett. 13, H357 (2010).CrossRefGoogle Scholar
21.Jeong, S., Jeong, Y., and Moon, J.: Solution-processed zinc tin oxide semiconductor for thin-film transistors. J. Phys. Chem. C 112, 1108 (2008).CrossRefGoogle Scholar
22.Kim, Y.H., Ho Kim, K., Oh, M.S., Kim, H.J., Han, J.I., Han, M.K., and Park, S.K.: Ink-jet-printed zinc–tin–oxide thin-film transistors and circuits with rapid thermal annealing process. IEEE Electron Device Lett. 31, 834 (2010).Google Scholar
23.Avis, C. and Jang, J.: A high performance inkjet printed zinc tin oxide transparent thin-film transistor manufactured at the maximum process temperature of 300°C and its stability test. Electrochem. Solid-State Lett. 14, J9 (2011).CrossRefGoogle Scholar
24.Pal, B.N., Dhar, B.M., See, K.C., and Katz, H.E.: Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. Nat. Mater. 8, 898 (2009).CrossRefGoogle ScholarPubMed
25.Kamiya, T., Nomura, K., and Hosono, H.: Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305 (2010).CrossRefGoogle ScholarPubMed
26.Chambers, S.A., Engelhard, M.H., Shutthanandan, V., Zhu, Z., Droubay, T.C., Qiao, L., Sushko, P.V., Feng, T., Lee, H.D., Gustafsson, T., Shah, A.B., Zuo, J-M., and Ramasse, Q.M.: Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3(001) heterojunction. Surf. Sci. Rep. 65, 317 (2010).CrossRefGoogle Scholar
27.Mayer, M.: SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut fur Plasmaphysik (Garching, Germany, 1997).Google Scholar
28.Young, D.L., Moutinho, H., Yan, Y., and Coutts, T.J.: Growth and characterization of radio frequency magnetron sputter-deposited zinc stannate, Zn2SnO4, thin films. J. Appl. Phys. 92, 310 (2002).CrossRefGoogle Scholar
29.Kluth, O., Agashe, C., Hupkes, J., Muller, J., and Rech, B.: Magnetron sputtered zinc stannate films for silicon thin film solar cells. In Proceedings of Third World Conference on Photovoltaic Energy Conversion; K. Kurokawa, L.L. Kazmerski, B. McNelis, M. Yamaguchi, C. Wronski, W.C. Sinke, eds., IEEE, Japan, 2003; p. 1800.Google Scholar
30.Khorami, H.A., Keyanpour – Rad, M., and Vaezi, M.R.: Synthesis of SnO2/ZnO composite nanofibers by electrospinning method and study of its ethanol sensing properties. Appl. Surf. Sci. 257, 7988 (2011).CrossRefGoogle Scholar
31.Ko, J.H., Kim, I.H., Kim, D., Lee, K.S., Lee, T.S., Cheong, B., and Kim, W.M.: Transparent and conducting Zn-Sn-O thin films prepared by combinatorial approach. Appl. Surf. Sci. 253, 7398 (2007).CrossRefGoogle Scholar
32.Jin, M.A., Shulai, H., Honglei, M.A., and Lingyun, G.A.I.: Preparation and characterization of transparent conducting Zn-Sn-O films deposited on organic substrates at low temperature. Sci. China 46, 619 (2003).Google Scholar
33.Stambolova, I., Toneva, A., Blaskov, V., Radev, D., Tsvetanova, Ya., Vassilev, S., and Peshev, P.: Preparation of nanosized spinel stannate, Zn2SnO4, from a hydroxide precursor. J. Alloys Compd. 391, L1 (2005).CrossRefGoogle Scholar
34.Yamada, Y., Seno, Y., Masuoka, Y., and Yamashita, K.: Nitrogen oxides sensing characteristics of Zn2SnO4 thin film. Sens. Actuators, B 49, 248 (1998).CrossRefGoogle Scholar
35.Ivetić, T., Nikolić, M.V., Nikolić, P.M., Blagojević, V., Đurić, S., Srećković, T., and Ristić, M.M.: Investigation of zinc stannate synthesis using photoacoustic spectroscopy. Sci. Sintering 39, 153 (2007).CrossRefGoogle Scholar
36.Minami, T., Takata, S., Sato, H., and Sonohara, H.: Properties of transparent zinc-stannate conducting films prepared by radio frequency magnetron sputtering. J. Vac. Sci. Technol., A 13, 1095 (1995).CrossRefGoogle Scholar
37.Minami, T., Sonohara, H., Takata, S., and Sato, H.: Highly transparent and conductive zinc-stannate thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 33, L1693 (1994).CrossRefGoogle Scholar
38.Oliziersky, A., Barquinha, P., Vilá, A., Magaña, C., Fortunato, E., Morante, J.R., and Martins, R.: Role of Ga2O3-In2O3-ZnO channel composition on the electrical performance of thin-film transistors. Mater. Chem. Phys. 131, 512 (2011).CrossRefGoogle Scholar
39.Annamalai, A., Eo, Y.D., Im, C., and Lee, M-J.: Surface and dye loading behavior of Zn2SnO4 nanoparticles hydrothermally synthesized using different mineralizers. Mater. Charact. 62, 1007 (2011).CrossRefGoogle Scholar
41.Herman, G.S., Dohnalek, Z., Ruzycki, N., and Diebold, U.: Experimental investigation of the interaction of water and methanol with anatase-TiO2(101). J. Phys. Chem. B 107, 2788 (2003).CrossRefGoogle Scholar
42.Jain, V.K., Kumar, P., Kumar, M., Jain, P., Bhandari, D., and Vijay, Y.K.: Study of post annealing influence on structural, chemical and electrical properties of ZTO thin films. J. Alloys Compd. 509, 3541 (2011).CrossRefGoogle Scholar
43.Jeong, S., Ha, Y.G., Moon, J., Facchetti, A., and Marks, T.: Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 22, 1346 (2010).CrossRefGoogle ScholarPubMed
44.Meng, L-J., Moreira de Sa, C.P., and dos Santos, M.P.: Study of the structural properties of ZnO thin films by x-ray photoelectron spectroscopy. Appl. Surf. Sci. 78, 57 (1994).CrossRefGoogle Scholar
45.Lu, Y.F., Ni, H.Q., Mai, Z.H., and Ren, Z.M.: The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition. J. Appl. Phys. 88, 498 (2000).CrossRefGoogle Scholar
46.Deng, X.Y., Verdaguer, A., Herranz, T., Weis, C., Bluhm, H., and Salmeron, M.: Surface chemistry of Cu in the presence of CO2 and H2O. Langmuir 24, 9474 (2008).CrossRefGoogle ScholarPubMed
47.Nomura, K., Kamiya, T., Ohta, H., Hirano, M., and Hosono, H.: Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing. Appl. Phys. Lett. 93, 192107 (2008).CrossRefGoogle Scholar
48.Kim, M-G., Kanatzidis, M.G., Facchetti, A., and Marks, T.J.: Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10, 382 (2011).CrossRefGoogle ScholarPubMed
49.Fakhri, M., Görrn, P., Weimann, T., Hinze, P., and Riedl, T.: Enhanced stability against bias-stress of metal-oxide thin film transistors deposited at elevated temperatures. Appl. Phys. Lett. 99, 123503 (2011).CrossRefGoogle Scholar
50.Choi, W-S.: Interfacial study of metal oxide with source-drain electrodes and oxide semiconductors by XPS. Electron. Mater. Lett. 8, 87 (2012).CrossRefGoogle Scholar
51.Xie, Y., Zhao, X., Chen, Y., Zhao, Q., and Yuan, Q.: Preparation and characterization of porous C-modified anatase titania films with visible light catalytic activity. J. Solid State Chem. 180, 3546 (2007).CrossRefGoogle Scholar
52.Hoffman, R.L.: ZnO-channel thin-film transistors: Channel mobility. J. Appl. Phys. 95, 5813 (2004).CrossRefGoogle Scholar