Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T17:38:20.688Z Has data issue: false hasContentIssue false

Aqueous solution diffusion in hydrophobic nanoporous thin-film glasses

Published online by Cambridge University Press:  03 March 2011

Eric P. Guyer
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Jay Gantz
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Reinhold H. Dauskardt*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
*
c) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We demonstrate that diffusion of aqueous buffered solutions into strongly hydrophobic nanoporous methyl silsesquioxane glass films can occur without the application of external pressure. The organic component of these glasses in the form of methyl groups imparts the strong hydrophobicity and perception that they are impervious to the ingress of aqueous solutions by capillary action or diffusion. The presence of small concentrations of organic buffering agents in buffered solutions appears to facilitate the diffusion. The diffusion distance followed a square root of time dependence characteristic of Fick’s Law. The diffusion coefficients varied markedly with the concentration of buffering agents, solution pH, and temperature. Similar effects were not observed for nonbuffered solutions that exhibited no detectable diffusion. Likely mechanisms responsible for the observed behavior are proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Beck, J.S.: Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).CrossRefGoogle Scholar
2Hedrick, J.L., Miller, R.D., Hawker, C.J., Carter, K.R., Volksen, W., Yoon, D.Y., and Trollsas, M.: Templating nanoporosity in thin-film dielectric insulators. Adv. Mater. 10, 1049 (1998).3.0.CO;2-F>CrossRefGoogle Scholar
3Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998).CrossRefGoogle ScholarPubMed
4Guarini, K.W., Black, C.T., Milkove, K.R., and Sandstrom, R.L.: Nanoscale patterning using self-assembled polymers for semiconductor applications. J. Vac. Sci. Technol., B 19, 2784 (2001).CrossRefGoogle Scholar
5Yang, S., Mirau, P.A., Pai, C-S., Nalamasu, O., Reichmanis, E., Lin, E.K., Lee, H-J., Gidley, D.W., and Sun, J.: Molecular templating of nanoporous ultralow-dielectric constant (approximately = 1.5) organosilicates by tailoring the microphase separation of triblock copolymers. Chem. Mater. 13, 2762 (2001).CrossRefGoogle Scholar
6Shaw, T.M., Jimerson, D., Haders, D., Murray, C.E., Grill, A., Edelstein, D.C., and Chidambarrao, D.: Moisture and oxygen uptake in low k/copper interconnect structures, in Advanced Metallization Conference 2003 (AMC 2003), Montreal, Quebec, Canada, & Tokyo, Japan (Materials Research Society, Warrendale, PA, 2004).Google Scholar
7Worsley, M.A., Bent, S.F., Gates, S.M., Shaw, T., Volksen, W., and Miller, R.D.: Detection of open or closed porosity in low-k dielectrics by solvent diffusion. Microelectron. Eng. 82, 113 (2005).CrossRefGoogle Scholar
8Shamiryan, D., Abell, T., Le, Q.T., and Maex, K.: Pinhole density measurements of barriers deposited on low-k films. Microelectron. Eng. 70, 341 (2003).CrossRefGoogle Scholar
9Shamiryan, D., Baklanov, M.R., and Maex, K.: Diffusion barrier integrity evaluation by ellipsometric porosimetry. J. Vac. Sci. Technol., B Microelectronics and Nanometer Structures. 21(1 SPEC.), 220 (2003).Google Scholar
10Shamiryan, D. and Maex, K.: Solvent diffusion in porous low-k dielectric films, in Materials, Technology and Reliability for Advanced Interconnects and Low-k Dielectrics–2003, edited by McKerrow, A.J., Leu, J., Kraft, O. and Kikkawa, T. (Mater. Res. Soc. Symp Proc. 766, Warrendale, PA, 2003), p. 229.Google Scholar
11Kim, H.C., Wilds, J.B., Hinsberg, W.D., Johnson, L.R., Volksen, W., Magbitang, T., Lee, V.Y., Hedrick, J.L., Hawker, C.J., Miller, R.D., and Huang, E.: Selective sorption of nanoporous poly(methyl silsesquioxane). Chem. Mater. 14, 4628 (2002).CrossRefGoogle Scholar
12Guyer, E.P., Patz, M., and Dauskardt, R.H.: Fracture of nanoporous methylsilsesquioxane thin-film glasses. J. Mater. Res. 21, 882 (2006).CrossRefGoogle Scholar
13Petty, M.C.: Langmuir-Blodgett Films: An Introduction (Cambridge University Press, Cambridge, UK, 1996), pp. 1238.CrossRefGoogle Scholar
14Lefevre, B., Saugey, A., Barrat, J.L., Bocquet, L., Charlaix, E., Gobin, P.F., and Vigier, G.: Intrusion and extrusion of water in hydrophobic mesopores. J. Chem. Phys. 120(10), 4927 (2004).CrossRefGoogle ScholarPubMed
15Spuller, M.T. and Hess, D.W.: Incomplete wetting of nanoscale thin-film structures. J. Electrochem. Soc. 150, G476 (2003).CrossRefGoogle Scholar
16Le, Q., Jeannot, V., Baklanov, M., Vanderheyden, R., Boullart, W., and Vanhaelemeersch, S.: Effect of surfactant as additive in wet clean solutions on properties of low-k materials. Electrochem. Solid-State Lett. 9, F17 (2006).CrossRefGoogle Scholar
17Thomson, W.: On the equilibrium of vapor at a curved surface of liquid. Philos. Mag. 42, 448 (1871).CrossRefGoogle Scholar
18Fisher, L.R., Gamble, R.A., and Middlehurst, J.: The Kelvin equation and the capillary condensation of water. Nature 290, 575 (1981).CrossRefGoogle Scholar