Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T17:20:48.221Z Has data issue: false hasContentIssue false

Application of novel ionic liquids for reverse atom transfer radical polymerization of methacrylonitrile without any additional ligand

Published online by Cambridge University Press:  31 January 2011

Hou Chen*
Affiliation:
School of Chemistry and Materials Science, Ludong University, Yantai 264025, People’s Republic of China
Pingli Lv
Affiliation:
School of Chemistry and Materials Science, Ludong University, Yantai 264025, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Reverse atom transfer radical polymerization of methacrylonitrile (MAN) initiated by azobisisobutyronitrile (AIBN) was approached for the first time in the absence of any ligand in four novel ionic liquids, 1-methylimidazolium acetate ([mim][AT]), 1-methylimidazolium butyrate ([mim][BT]), 1-methylimidazolium caproate ([mim][CT]), and 1-methylimidazolium heptylate ([mim][HT]). The polymerization in [mim][AT] not only showed the best control of molecular weight and its distribution but also provided a more rapid reaction rate with the ratio of [MAN]:[FeCl3]:[AIBN] at 300:2:1. The block copolymer PMAN-b-PSt was obtained via a conventional ATRP process in [mim][AT] by using the resulting PMAN as a macroinitiator. After simple purification, [mim][AT] and FeCl3 could be easily recycled and reused and had no effect on the living nature of reverse atom transfer radical polymerization of MAN.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Raja, S., Smith, C.E., and Tew, G.N.: ATRP synthesis of abc lipophilic-hydrophilic-fluorophilic triblock copolymers. J. Polym. Sci., Part A: Polym. Chem. 45, 2601 (2007).Google Scholar
2.Ohno, S. and Matyjaszewski, K.: Controlling grafting density and side chain length in poly(n-butyl acrylate) by ATRP copolymerization of macromonomers. J. Polym. Sci., Part A: Polym. Chem. 44, 5454 (2006).CrossRefGoogle Scholar
3.Wang, J.S. and Matyjaszewski, K.: Controlled/”living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117, 5614 (1995).CrossRefGoogle Scholar
4.Wang, J.S. and Matyjaszewski, K.: Controlled/”living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28, 7901 (1995).CrossRefGoogle Scholar
5.Kato, M., Kamigaito, M., Sawamoto, M., and Higashimura, T.: Polymerization of methyl methacrylate with the carbon tetrachlo-ride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylalumi-num bis(2,6-di-tert-butylphenoxide) initiating system: Possibility of living radical polymerization. Macromolecules 28, 1721 (1995).CrossRefGoogle Scholar
6.Matyjaszewski, K. and Xia, J.: Atom transfer radical polymerization. Chem. Rev. 101, 2921 (2001).CrossRefGoogle ScholarPubMed
7.Shipp, D.A. and Yu, X.: Kinetic analysis of styrene atom transfer radical polymerization: Extraction of radical-radical termination rate coefficients. J. Polym. Sci., Part A: Pohm. Chem. 42, 5548 (2004).CrossRefGoogle Scholar
8.Ando, T., Kamigaito, M., and Sawamoto, M.: Iron(II) chloride complex for living radical polymerization of methyl methacrylate 1. Macromolecules 30, 4507 (1997).CrossRefGoogle Scholar
9.Kamigaito, M., Ando, T., and Sawamoto, M.: Metal-catalyzed living radical polymerization. Chem. Rev. 101, 3689 (2001).CrossRefGoogle ScholarPubMed
10.Watanabe, Y., Ando, T., Kamigaito, M., and Sawamoto, M.: Ru(Cp*)Cl(PPh3)2: A versatile catalyst for living radical polymerization of methacrylates, acrylates, and styrene. Macromolecules 34, 4370 (2001).CrossRefGoogle Scholar
11.Wang, J.S. and Matyjaszewski, K.: “Living”/controlled radical polymerization. Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules 28, 7572 (1995).CrossRefGoogle Scholar
12.Xia, J. and Matyjaszewski, K.: Controlled/“living” radical polymerization. Homogeneous reverse atom transfer radical polymerization using AIBN as the initiator. Macromolecules 30, 7692 (1997).CrossRefGoogle Scholar
13.Min, K., Li, M., and Matyjaszewski, K.: Preparation of gradient copolymers via ATRP using a simultaneous reverse and normal initiation process. I. Spontaneous gradient. J. Polym. Sci., Part A: Polym. Chem. 43, 3616 (2005).CrossRefGoogle Scholar
14.Ding, S.J., Yang, J., Radosz, M., and Shen, Y.Q.: Atom transfer radical polymerization of methyl methacrylate via reversibly supported catalysts on silica gel via self-assembly. J. Polym. Sci., Part A: Polym. Chem. 42, 22 (2004).CrossRefGoogle Scholar
15.Yan, D.Y., Wang, W.X., and Tu, W.P.: Living/controlled radical polymerization initiated by redox system. Polym. Prepr. (Am. Chem. Soc, Div. Polym. Chem.) 40, 358 (1999).Google Scholar
16.Moustafa, A.F., Zheng, F., and Kennedy, J.P.: Novel polyisobutylene stars. XXVIII. A star block comprising three poly (isobutylene-b-acrylonitrile) arms radiating from an aromatic core: Synthesis and characterization. Polym. Bull. 48, 225 (2002).CrossRefGoogle Scholar
17.Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071 (1999).CrossRefGoogle ScholarPubMed
18.Sheldon, R.: Catalytic reactions in ionic liquids. Chem. Commun. 23, 2399 (2001).CrossRefGoogle Scholar
19.Xu, L., Chen, W., and Xiao, J.: Heck reaction in ionic liquids and the in situ identification of N-heterocyclic carbene complexes of palladium. Organometallics 19, 1123 (2000).CrossRefGoogle Scholar
20.Liao, L.Q., Zhang, C., and Gong, S.Q.: Microwave-assisted ring-opening polymerization of trimethylene carbonate in the presence of ionic liquid. J. Polym. Sci., Part A: Polym. Chem. 45, 5857 (2007).CrossRefGoogle Scholar
21.Biedron, T. and Kubisa, P.: Chain transfer to ionic liquid in an anionic polymerization of methyl methacrylate. J. Polym. Sci., Part A: Polym. Chem. 45, 4168 (2007).CrossRefGoogle Scholar
22.Han, H.J., Chen, F.X., Yu, J.H., Dang, J.Y., Ma, Z., Zhang, Y.Q., and Xie, M.R.: Ring-opening metathesis polymerization of functionalized cyclooctene by a ruthenium-based catalyst in ionic liquid. J. Polym. Sci., Part A: Polym. Chem. 45, 3986 (2007).CrossRefGoogle Scholar
23.Lozinskaya, E.I., Shaplov, A.S., Kotseruba, M.V., Komarova, L.I., Lyssenko, K.A., Antipin, M.Y., Golovanov, D.G., and Vygodskii, Y.S.: “One-pot” synthesis of aromatic poly(1,3,4-oxadiazole)s in novel solvents: Ionic liquids. J. Polym. Sci., Part A: Polym. Chem. 44, 380 (2006).Google Scholar
24.Dali, S., Lefebvre, H., Gharbi, R.E., and Fradet, A.: Synthesis of poly(glycolic acid) in ionic liquids. J. Polym. Sci., Part A: Polym. Chem. 44, 3025 (2006).CrossRefGoogle Scholar
25.Carmichael, A.J., Haddleton, D.M., Bon, S.A.F., and Seddon, K.R.: Copper(I) mediated living radical polymerisation in an ionic liquid. Chem. Commun. 14, 1237 (2000).CrossRefGoogle Scholar
26.Sarbu, T. and Matyjaszewski, K.: ATRP of methyl methacrylate in the presence of ionic liquids with ferrous and cuprous anions. Macromol. Chem. Phys. 202, 3379 (2001).3.0.CO;2-3>CrossRefGoogle Scholar
27.Biedroń, T. and Kubisa, P.: Atom transfer radical polymerization of acrylates in an ionic liquid: Synthesis of block copolymers. J. Polym. Sci., Part A: Polym. Chem. 40, 2799 (2002).CrossRefGoogle Scholar
28.Zhao, Y.L., Zhang, J.M., Jiang, J., Chen, C.F., and Xi, F.: Atom transfer radical copolymerization of n-hexylmaleimide and styrene in an ionic liquid. J. Polym. Sci., Part A: Polym. Chem. 40, 3360 (2002).CrossRefGoogle Scholar
29.Zhang, H., Hong, K., and Mays, J.W.: Synthesis of block copolymers of styrene and methyl methacrylate by conventional free radical polymerization in room temperature ionic liquids. Macro-molecules 35, 5738 (2002).CrossRefGoogle Scholar
30.Ding, S.J., Tang, H.D., Radosz, M., and Shen, Y.Q.: Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate. J. Polym. Sci., Part A: Polym. Chem. 42, 5794 (2004).CrossRefGoogle Scholar
31.Biedroń, T. and Kubisa, P.: Radical polymerization in a chiral ionic liquid: Atom transfer radical polymerization of acrylates. J. Polym. Sci., Part A: Polym. Chem. 43, 3454 (2005).CrossRefGoogle Scholar
32.Percec, V. and Grigoras, C.: Catalytic effect of ionic liquids in the Cu2O/2,2′-bipyridine catalyzed living radical polymerization of methyl methacrylate initiated with arenesulfonyl chlorides. J. Polym. Sci., Part A: Polym. Chem. 43, 5609 (2005).CrossRefGoogle Scholar
33.Tang, H.D., Tang, J.B., Ding, S.J., Radosz, M., and Shen, Y.Q.: Atom transfer radical polymerization of styrenic ionic liquid monomers and carbon dioxide absorption of the polymerized ionic liquids. J. Polym. Sci., Part A: Polym. Chem. 43, 1432 (2005).CrossRefGoogle Scholar
34.Maria, S., Biedroń, T., Poli, R., and Kubisa, P.: Atom transfer radical polymerization of methyl acrylate with molybdenum halides as catalysts in an ionic liquid. J. Appl. Polym. Sci. 105, 278 (2007).CrossRefGoogle Scholar
35.Ryan, J., Aldabbagh, F., Zetterlund, P.B., and Yamada, B.: First nitroxide-mediated controlled/living free radical polymerization in an ionic liquid. Macromol. Rapid Commun. 25, 930 (2004).CrossRefGoogle Scholar
36.Ma, H.Y., Wan, X.H., Chen, X.F., and Zhou, Q.F.: Reverse atom transfer radical polymerization of methyl methacrylate in imida-zolium ionic liquids. Polymer 44, 5311 (2003).CrossRefGoogle Scholar
37.Ma, H.Y., Wan, X.H., Chen, X.F., and Zhou, Q.F.: Reverse atom transfer radical polymerization of methyl methacrylate in room-temperature ionic liquids. J. Polym. Sci., Part A: Polym. Chem. 41, 143 (2003).CrossRefGoogle Scholar
38.Li, N.J., Lu, J.M., Xu, Q.F., Xia, X.W., and Wang, L.H.: Reverse atom transfer radical polymerization of MMA via immobilized catalysts in imidazolium ionic liquids. J. Appl. Polym. Sci. 103, 3915 (2007).CrossRefGoogle Scholar
39.Yamadaa, B., Zetterlundb, P.B., and Sato, E.: Utility of propenyl groups in free radical polymerization: Effects of steric hindrance on formation and reaction behavior as versatile intermediates. Prog. Polym. Sci. 31, 835 (2006).CrossRefGoogle Scholar
40.De, P., Sathyanarayana, D.N., Sadasivamurthy, P., and Sridhar, S.: Reactivity ratios for the oxidative copolymerizations of indene with methyl methacrylate and methacrylonitrile. Eur. Polym. J. 38, 847 (2002).CrossRefGoogle Scholar
41.Kaur, I., Chauhan, G.S., and Misra, B.N.: Modification of Tefzel film by graft copolymerization of acrylonitrile and methacrylonitrile for use as membrane. Desalination 119, 359 (1998).CrossRefGoogle Scholar
42.Huddleston, J.G., Willauer, H.D., Swatlowski, R.P., Viesser, A.E., and Rogers, R.D.: Room temperature ionic liquids as novel media for “clean” liquid-liquid extraction. Chem. Commun. 16, 1765 (1998).CrossRefGoogle Scholar
43.Zhu, X.L., Zhou, N.C., He, X.M., Cheng, Z.P., and Lu, J.M.: Atom transfer radical bulk polymerization of methyl methacrylate under microwave irradiation. J. Appl. Polym. Sci. 88, 1787 (2003).CrossRefGoogle Scholar
44.Lai, G.Q., Ma, F.M., Hu, Z.Q., Qiu, H.Y., Jiang, J.X., Wu, J.R., Chen, L.M., and Wu, L.B.: Novel ionic liquids as reaction medium for atom transfer radical polymerization of methyl methacrylate. Chin. Chem. Lett. 18, 601 (2007).CrossRefGoogle Scholar
45.Monge, S., Darcos, V., and Haddleton, D.M.: Effect of DMSO used as solvent in copper mediated living radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 42, 6299 (2004).CrossRefGoogle Scholar