Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:46:09.809Z Has data issue: false hasContentIssue false

Synthesis and Magnetic Properties of Nanostructured Maghemite

Published online by Cambridge University Press:  31 January 2011

D. Vollath
Affiliation:
Institut für Materialforschung III, Forschungszentrum Karlsruhe, P.O. Box 3640, D-76021 Karlsruhe, Germany
D. V. Szabó
Affiliation:
Institut für Materialforschung III, Forschungszentrum Karlsruhe, P.O. Box 3640, D-76021 Karlsruhe, Germany
R. D. Taylor
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. O. Willis
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Nanocrystalline maghemite, γ–Fe2O3, can be synthesized in a microwave plasma using FeCl3 or Fe3(CO)12 as the precursor. Electron microscopy revealed particle sizes in the range of 5 to 10 nm. In general, this material is superparamagnetic. The magnetic properties are strongly dependent on the precursor. In both cases the production process leads to a highly disordered material with the consequence of a low magnetization. The assumption of a disordered structure is also supported by electron energy loss (EEL) and Mössbauer spectroscopy. The structure of this material shows a nearly identical number of cations on tetrahedral and octahedral lattice sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jacobs, I. S. and Bean, C. P., in Magnetism, edited by Rado, G. T. and Suhl, H. (Academic Press, New York, London, 1963), p. 271 ff.Google Scholar
2.Morup, S., J. Magn. Magn. Mater. 37, 39 (1983).CrossRefGoogle Scholar
3.Bacri, J. C., Percinski, R., Salin, D., Cabuil, V., and Massart, R., J. Magn. Magn. Mater. 62, 36 (1986).CrossRefGoogle Scholar
4.Vollath, D. and Sickafus, K. E., Nanostructured Materials 1, 427 (1992).CrossRefGoogle Scholar
5.Vollath, D. and Sickafus, K. E., J. Mater. Res. 8, 2978 (1993).CrossRefGoogle Scholar
6.Vollath, D., Szabó, D. V., Taylor, R. D., Willis, J. O., and Sickafus, K. E., Nanostructured Materials 6, 941 (1995).CrossRefGoogle Scholar
7.MacDonald, A. D., Microwave Breakdown in Gases (John Wiley & Sons, New York, 1966).Google Scholar
8.Vollath, D. and Szabó, D. V., Nanostructured Materials 4, 927 (1994).CrossRefGoogle Scholar
9.Phase Diagrams for Ceramists, Supplement (American Ceramic Society, 1969), p. 5.Google Scholar
10.Colliex, C., Manoubi, T., and Ortiz, C., Phys. Rev. B 44, 11402 (1991).CrossRefGoogle Scholar
11.Kurata, H., Lefèvre, E., Colliex, C., and Brydson, R., Phys. Rev. B 47, 13763 (1993).CrossRefGoogle Scholar
12.Gangapadhyay, S., Hadjipanayis, G. C., Dale, B., Sorensen, C., and Klabunde, K. L., Nanostructured Materials 1, 77 (1992).CrossRefGoogle Scholar
13.Parker, T., Foster, M. W., Margulies, D. T., and Berkowitz, A. E., Phys. Rev. B 47, 7885 (1993).CrossRefGoogle Scholar
14.Hendriksen, P. V., Bodkert, F., Linderoth, S., Wells, S., and Morup, S., J. Phys.: Condens. Matter 6, 3081 (1994).Google Scholar
15.Hendriksen, P. V., Linderoth, S., Oxborrow, C. A., and Morup, S., J. Phys.: Condens. Matter 6, 3091 (1994).Google Scholar
16.Berkowitz, A. E. and Schüle, W. J., J. Appl. Phys. 39, 1261 (1968).CrossRefGoogle Scholar
17.Paine, , Mendelson, , and Luborsky, , Phys. Rev. 100, 1055 (1955).CrossRefGoogle Scholar
18.Greenwood, N. N. and Gibbs, T. C., Mössbauer Spectroscopy (Chapman & Hall, London, 1971), p. 241 ff.CrossRefGoogle Scholar
19.Morup, S. and Topsoe, H., Appl. Phys. 11, 63 (1976).CrossRefGoogle Scholar
20.Herr, U., Jing, J., Birringer, R., Gonser, U., and Gleiter, H., Appl. Phys. Lett. 50, 472 (1987).CrossRefGoogle Scholar
21.Birringer, R., Herr, U., and Gleiter, H., Proc. of the JIMIS-4, Suppl. to Trans. Jpn. Inst. Met., 43 (1986).Google Scholar
22.Haneda, K. and Morrish, A. H., Phys. Lett. A64, 259 (1977).CrossRefGoogle Scholar
23.El-Hilo, M., O'Grady, K., and Chantrell, R. W., J. Magn. Magn. Mater. 114, 295 (1992); 114, 307 (1992); 117, 21 (1992).CrossRefGoogle Scholar
24.Dormann, J. L., Bessais, L., and Fiorani, D., J. Phys. C21, 2015 (1988).Google Scholar
25.Morup, S., Hyperfine Interact. 60, 959 (1990).CrossRefGoogle Scholar