Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T23:58:26.814Z Has data issue: false hasContentIssue false

Synchrotron x-ray topography studies of twin structures in lanthanum aluminate single crystals

Published online by Cambridge University Press:  31 January 2011

Gong-Da Yao
Affiliation:
Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794-2275
Shang Yun Hou
Affiliation:
Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794-2275
Michael Dudley
Affiliation:
Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794-2275
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

An extensive investigation of twin structures in lanthanum aluminate single crystals at room temperature has been undertaken using White Beam Synchrotron X-Ray Topography (WBSXRT). Twin configurations, directly observable via orientation contrast, were found to comprise both large-volume, macroscopic twins and thick twin lamellae. Positional shifts of twin domain images with respect to matrix images, arising from the mutual misorientation of diffraction vectors, were measured on x-ray topographic images recorded from the (220)rhom planes approximately parallel to the specimen surface and compared to calculated values in order to solve the twin laws in this system. The dominant twin operations were found to be (101)rhom, (011)rhom, and (112)rhom mirror reflections. The potential influence of the twins on the growth of epitaxial Ba2YCu3O7−δ thin films is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.O'Bryan, H. M., Gallagher, P. K., Berkstresser, G. W., and Brandle, C. D., J. Mater. Res. 5, 183 (1990).CrossRefGoogle Scholar
2.Yao, G-D., Dudley, M., Wang, Y., Liu, X., and Liebermann, R., Mater. Sci. Eng. (A) 132, 23 (1991).CrossRefGoogle Scholar
3.Phillips, J. M., Siegal, M. P., Perry, C. L., and Marshall, J. H., IEEE Trans. Magn. 27, 1006 (1991).CrossRefGoogle Scholar
4.Talvacchio, J. and Wagner, G. R., in “Superconductivity Applications for Infrared and Microwave Devices,” SPIE Proceedings, 1292 (SPIE, 1990), p. 2.Google Scholar
5.Mogro-Campero, A., Turner, L. G., Hall, E. L., Garbauskas, M. F., and Lewis, N., Appl. Phys. Lett. 54, 2719 (1989).CrossRefGoogle Scholar
6.Grischkowsky, D. and Keiding, S., Appl. Phys. Lett. 57, 1055 (1990).CrossRefGoogle Scholar
7.Siegal, M. P., Phillips, J. M., Hsieh, Y-F., and Marshall, J. H., Physica C 172, 282 (1990).CrossRefGoogle Scholar
8.Giess, E. A., Sandstrom, R. L., Gallagher, W. J., Gupta, A., Shinde, S. L., Cook, R. F., Cooper, E. I., O'Sullivan, E. J. M., Roldan, J. M., Segm¨ller, A. P., and Angilello, J., IBM J. Res. Develop. 34, 916 (1990).CrossRefGoogle Scholar
9.Berkstresser, G. W., Valentino, A. J., and Brandle, C. D., J. Cryst. Growth 109, 467 (1991).CrossRefGoogle Scholar
10.Tuomi, T., Naukkarinen, K., and Rabe, P., Phys. Status Solidi (a) 25, 93 (1974).CrossRefGoogle Scholar
11.Klapper, H., Prog. Cryst. Growth and Charact. 14, 367 (1987).CrossRefGoogle Scholar
12.Yao, G-D., Dudley, M., Hou, S. Y., and DiSalvo, R.Nucl. Instrura. Methods B56/57, 400 (1991).CrossRefGoogle Scholar
13.Kelly, A. and Groves, G. W., Crystallography and Crystal Defects (Longman Group Limited, London, 1970), p. 293.Google Scholar
14.Sarikaya, M., Aksay, I. A., and Kikuchi, R., submitted to Phys. Rev. B in Nov. 1989.Google Scholar
15.Klapper, H., Roberts, K. J., Götz, D., and Herres, N., J. Cryst. Growth 65, 621 (1983).CrossRefGoogle Scholar
16.Balestrino, G., Foglietti, V., Marinelli, M., Milani, E., Paoletti, A., and Paroli, P., Appl. Phys. Lett. 57, 2359 (1990).CrossRefGoogle Scholar