Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T23:54:57.777Z Has data issue: false hasContentIssue false

Structural Properties of Yttria-stabilized Zirconia Thin Films Grown by Pulsed Laser Deposition

Published online by Cambridge University Press:  31 January 2011

J. Y. Dai
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
H. C. Ong
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
R. P. H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

Yttria-stabilized zirconia (YSZ) thin films grown by the pulsed laser deposition method on (0001) sapphire substrates have been studied by x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM). It was found that the crystal orientation of the YSZ films changes as a function of oxygen pressure during deposition. At low oxygen pressure (50 mTorr), well-defined (111) oriented YSZ films are grown. High oxygen pressure favors the nucleation of (001) oriented YSZ grains. A model to explain the preferred growth direction of (001) YSZ is presented. Utilizing the experimental data, we have developed a two-step process to epitaxially grow high-quality (001) oriented YSZ on (0001) sapphire substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Miyahara, Y., Tsukada, K., and Miyagi, H., J. Appl. Phys. 63, 2431 (1988).CrossRefGoogle Scholar
2.Negishi, A., Nozaki, K., and Ozawa, T., Solid State Ionics 3–4, 443 (1981).CrossRefGoogle Scholar
3.Ohta, K., Yamada, K., Shimizu, K., and Tarni, Y., IEEE Trans. Electron Devices ED–29, 368 (1982).CrossRefGoogle Scholar
4.Reade, R.P., Mao, X.L., and Russo, R. E., Appl. Phys. Lett. 59, 739 (1991).CrossRefGoogle Scholar
5.Mogro-Campero, A., Supercond. Sci. Technol. 3, 155 (1990).CrossRefGoogle Scholar
6.Fork, D.K., Fenner, D. B., Connel, G. A.N, Phillips, J. M., and Geballe, T.H., Appl. Phys. Lett. 57, 1137 (1990).CrossRefGoogle Scholar
7.Bardal, A., Matthée, Th., Wecker, J., and Samwer, K., J. Appl. Phys. 75, 2902 (1994).CrossRefGoogle Scholar
8.Cain, M.G. and Lange, F.F., J. Mater. Res. 9, 674 (1994).CrossRefGoogle Scholar
9.Norton, D.P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D.M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D. F., Sales, B. C., and List, F. A., Science 274, 755 (1996).CrossRefGoogle Scholar
10.Dimos, D., Chaudhari, P., Mannhart, J., and LeGroves, F. K., Phys. Rev. Lett. 61, 1653 (1988).CrossRefGoogle Scholar
11.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
12.Ressler, K.G., Sonnenberg, N., and Cima, M.J., J. Electron. Mater. 25, 35 (1996).CrossRefGoogle Scholar
13.Iijima, Y., Onabe, K., Futaki, N., Sadakata, N., and Kohno, O., J. Appl. Phys. 74, 1905 (1993).CrossRefGoogle Scholar
14.Reade, R.P., Berdahl, P., Russo, R.E., and Garrison, S., Appl. Phys. Lett. 61, 2231 (1992).CrossRefGoogle Scholar
15.Sonnenberg, N., Ressler, K.G., McIntyre, P. C., and Cima, M.J., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D.K., Phillips, J. M., Ramesh, R., and Wolf, R.M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1993), p. 163.Google Scholar
16.Ong, H.C., Dai, J. Y., and Chang, R. P. H., Mater. Chem. Phys. (1998, in press).Google Scholar
17.Wu, X.D., Muenchausen, R.E., Nogar, N.S., Pique, A., Edwards, R., Wilkens, B., Ravi, T.S., Hwang, D. M., and Chen, C. Y., Appl. Phys. Lett. 58, 304 (1991).CrossRefGoogle Scholar
18.Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals (Butterworths, London, 1965).Google Scholar
19.Miller, K. T. and Lange, F. F., J. Mater. Res. 6, 2387 (1991).CrossRefGoogle Scholar
20.Miller, K. T., Lange, F. F., and Marshall, D. B., J. Mater. Res. 5, 151 (1990).CrossRefGoogle Scholar
21.Tomaszewski, H., Haemers, J., De Roo, N., Denul, J., and De Gryse, R., Thin Solid Films 293, 67 (1997).CrossRefGoogle Scholar